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ABSTRACT

Economic interactions often involve sequential actions, observational learning, and
contingent project implementation. We incorporate all-or-nothing thresholds in a
canonical model of information cascades. Early supporters effectively delegate their
decisions to a “gatekeeper,” resulting in unidirectional cascades without herding on
rejections. Project proposers can consequently charge higher prices. Proposal feasi-
bility, project selection, and information aggregation all improve, even when agents
can wait. Equilibrium outcomes depend on crowd size, and project implementation
and information aggregation achieve efficiency in the large-crowd limit. Our key in-
sights hold under thresholds in dollar amounts and alternative equilibrium selection,
among other model extensions.
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FINANCING BUSINESS ACTIVITIES AND GATHERING SUPPORT often involve
sequential contributions, observational learning, and project implementation
contingent on achieving certain threshold levels of support. Crowd-based
fundraising, which includes equity and reward crowdfunding, peer-to-peer
lending, and initial coin offerings, constitutes the most salient recent example.
Such economic interactions among sequential, privately informed agents are
prone to information cascades that lead to incomplete information aggregation
and suboptimal financing. Standard theories (e.g., Banerjee (1992), Bikhchan-
dani, Hirshleifer, and Welch (1992)) focus on pure informational externalities
with each agent’s payoff structure independent of others’ actions. We incor-
porate into a model of dynamic contribution games the fact that, in prac-
tice, many projects or proposals are implemented only with a sufficient level
of support—an “all-or-nothing” (AoN) threshold. We show that threshold im-
plementation drastically alters informational environments and economic out-
comes, with implications for financing projects and aggregating information—
arguably the two most important functions of modern financial markets.1

Specifically, we introduce threshold implementation in a standard frame-
work of information cascade à la Bikhchandani, Hirshleifer, and Welch (1992).
A project proposal is sequentially considered by N agents who choose to sup-
port or reject. Each supporter pays a prespecified contribution price and re-
ceives an eventual payoff normalized to one if the project is good. All agents
are risk-neutral with a common prior belief about the project’s quality. They
each receive a private, informative signal and observe the actions of preceding
agents before deciding whether to support. Deviating from the literature, we
assume that supporters pay the price and receive the payoff if and only if the
support level reaches an AoN threshold, which is either exogenously given or
endogenously determined jointly with the price by the proposer.

AoN thresholds lead to unidirectional cascades in which agents never ratio-
nally ignore positive private signals to reject the project (i.e., there are virtually
no DOWN cascades, which we define in the model), but may rationally ignore
negative private signals to support the project (i.e., UP cascades are possible),
making agents appear to have fears of missing out. Information aggregation
also becomes more efficient, especially with a large crowd. With endogenous
implementation threshold and price, the proposer no longer underprices the
issuance, as seen in Welch (1992). Consequently, proposal feasibility (positive
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1 An AoN threshold is common on crowdfunding platforms and in venture financing. Moreover,
supermajority rule or q-rule is common in many voting procedures, assurance contract or crowdac-
tion in public goods provision is characterized by sequential decisions and implementation thresh-
olds (e.g., Bagnoli and Lipman (1989)), and charitable projects set target levels of fundraising to
proceed (e.g., Andreoni (1998)).
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probability for implementation), project selection (good projects are more likely
implemented than bad projects), and information aggregation (public history of
support revealing project quality) all improve. In particular, when the number
of agents approaches infinity, equilibrium project implementation and informa-
tion aggregation become efficient, which is in stark contrast to findings in prior
literature on information cascades (Banerjee (1992), Lee (1993), Bikhchandani,
Hirshleifer, and Welch (1998), Ali and Kartik (2012)).

To derive these results, we first take the AoN threshold and price as given
in the subgame of agent contribution and learning. We show that before reach-
ing the threshold, the aggregation of private information stops only upon an
UP cascade. The intuition is that the AoN threshold links agents’ payoffs to
their subsequent actions, making them internalize part of the informational
externalities of their actions. Such forward-looking considerations lead to in-
teresting asymmetries: Even before an UP cascade, agents with positive pri-
vate signals always support because they essentially delegate decisions to a fu-
ture “gatekeeping” agent whose support decision brings the total support to the
threshold. This delegation hedges against mistakenly supporting a bad project
because the subsequent gatekeeper makes a more informed contribution de-
cision by observing a longer sequence of previous actions. DOWN cascades
are therefore always interrupted by agents as positive signals before the AoN
threshold is reached. In contrast, an agent with a negative signal is reluctant
to support a project before it reaches the AoN threshold or an UP cascade, for
fear that supporting the project (which would now be indistinguishable from
the actions of agents with positive signals) may mislead subsequent agents to
positively update their beliefs about the project’s quality in spite of the nega-
tive signal the agent privately observes. This agent’s supporting action would
then increase the likelihood of a bad project being funded, reducing her ex-
pected payoff. However, when the agent’s belief about the project’s quality is
sufficiently high, an UP cascade starts and the agent no longer worries about
misleading subsequent agents because they do not positively update based on
her action anyway.

We next analyze how the entrepreneur or proposer endogenously designs the
AoN threshold and the contribution price to maximize the level of support. A
higher AoN threshold, albeit less likely to be reached, delays potential DOWN
cascades because as we argue earlier, a DOWN cascade cannot happen before
the AoN threshold has been reached. The entrepreneur’s optimal AoN is thus
set to be just sufficient that achieving it implies a high valuation relative to
the contribution price and essentially excludes DOWN cascades. Meanwhile,
the proposer trades off increasing the proceeds from supporters (by charging
a higher price) with lowering the AoN (and charging a correspondingly lower
price so as to still effectively exclude DOWN cascades) to boost the probability
of implementing the project. In general, a larger crowd mitigates the concern
about implementation failure and generally permits a higher optimal price,
making prices depend endogenously on crowd size.

AoN thresholds and unidirectional cascades have three important implica-
tions. First, they improve project feasibility by allowing good projects with high
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production costs to be supported. Standard information cascade theories sug-
gest that for projects with high production costs, the contribution price nec-
essary to at least cover the cost is so high that the first agent will reject it
even with a positive private signal, resulting in a DOWN cascade and guaran-
teed funding failure (Welch (1992)). AoN thresholds mitigate concerns about
DOWN cascades, making it possible to charge a high price to cover the produc-
tion costs. Second, AoN thresholds improve project implementation efficiency
because charging a high price implies implementation only when the poste-
rior belief is sufficiently positive, which is correlated with the project’s positive
quality. Third, AoN thresholds facilitate information aggregation by mitigating
DOWN cascades and delaying the arrival of UP cascades. A proposer facing
a large number of potential supporters can use threshold implementation to
guard against DOWN cascades and to charge a high contribution price (which
delays UP cascades) for greater proceeds or support, regardless of whether the
threshold is eventually reached.

While outcomes in standard models of information cascades are independent
of the size of the agent base, the case with AoN thresholds is different: missup-
porting or misrejecting errors decrease with crowd size, and the endogenous
price converges to the highest level at which the proposer extracts full surplus.
In the limit, projects are implemented if and only if they are of high quality.
Public knowledge about the project’s true type also becomes perfect. We there-
fore obtain socially efficient project implementation (under private signals) and
full information aggregation with a large crowd, hitherto unachievable in most
models of information cascades. These findings are especially relevant in the
age of digital platforms and the Internet, which feature outreach to extremely
large crowds.

We demonstrate that our key insights apply even when agents have the op-
tion to postpone their decisions or to delay expending effort to acquire infor-
mation, and thus are less subject to the usual critiques of exogenous action
timing. We also show that our findings are robust to introducing investor het-
erogeneity and thresholds based on dollar amounts (and to introducing small
contribution frictions or learning costs, as discussed in the Appendix). We fur-
ther analyze other perfect Bayesian Nash equilibria (PBNE) under the same
mild tie-breaking convention to understand the strategic complementarity in-
troduced by AoN thresholds. In terms of project implementation and informa-
tion aggregation, the equilibrium outcomes converge to those characterized in
our baseline model.

The theoretical insights that we derive apply to many sequential contribu-
tion games such as venture financing or syndicated loans. We highlight the ap-
plication to crowdfunding for several reasons. First, crowdfunding has quickly
become a mainstream source of capital for entrepreneurs, with its total volume
surpassing the market size for angel funds in 2015 and reaching a whopping
35 billion USD globally in 2017 even before the explosion of crypto-token offer-
ings. Second, it presents a setting in which the technology allows for outreach
to large crowds, which renders the limiting results for large crowds relevant
and important. Third, the sequential nature of contributions and threshold
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implementation are salient in crowdfunding, making it representative of gen-
eral dynamic economic interactions with observational learning and threshold
implementation, unlike auctions.

Other forms of entrepreneurial or corporate finance also feature investors
frequently inquiring about preceding investments as well as threshold imple-
mentation written as clauses in contingency offering contracts, initial public
offerings (IPOs), subscription money-back guarantees, or private placement
memoranda.2 These settings can also be analyzed through our conceptual lens,
further demonstrating the practical importance of threshold implementation
design in a variety of economic interactions and financing situations.

Literature. Our paper adds to the theory of informational cascades, se-
quential decisions, and observational learning. The insights from prior dy-
namic informational models primarily concern signal structure and learning
bias (Banerjee (1992), Bikhchandani, Hirshleifer, and Welch (1992), Welch
(1992), Bikhchandani, Hirshleifer, and Welch (1998), Chamley (2004), Callan-
der (2007), Aghamolla and Hashimoto (2020)). Traditionally, informational
cascades can be asymmetric or even unidirectional only when some actions
are not observable (Chari and Kehoe (2004), Guarino, Harmgart, and Huck
(2011), Herrera and Hörner (2013)). Our contributions to this literature are
twofold. First, we obtain asymmetric informational cascades endogenously due
to threshold implementation even with observable actions. Second, we show
that full learning can be achieved with bounded signals once we allow for
payoff interdependence via threshold implementation. Importantly, we obtain
perfect information aggregation in large-crowd limits, which is typically un-
achievable with information cascades (Ali and Kartik (2012)). Our model there-
fore describes a new set of equilibrium behavior by large crowds and adds to
our understanding of how the latest technologies, such as the Internet and
blockchain, impact social efficiency in information aggregation and fundrais-
ing in financial markets.

Our paper also adds to an emerging literature on AoN design in the con-
text of crowdfunding and marketplace lending. Strausz (2017) and Ellman and
Hurkens (2019) find that AoN is crucial for mitigating moral hazard and en-
hances price discrimination. Chemla and Tinn (2020) share Strausz’s (2017)
concerns about moral hazard, but also emphasize the real option of learn-
ing through crowdfunding. Chang (2020) shows that in simultaneous move
games as in Chemla and Tinn (2020), AoN also generates more profit un-
der common-value assumptions by making the expected payments positively

2 In an angel or A round of financing, investors who are approached later in the fundraising
process often learn which other financiers indicated support for the project and offer additional
contributions on the condition that the fundraising reaches certain thresholds (Halac, Kremer,
and Winter (2020)). In an IPO, late investors learn from the behavior of early investors, and the
issuer may choose to withdraw the offering if the market reaction is lukewarm (e.g., Ritter and
Welch (2002)). Indeed, in the early 1980s, many tiny firms in the United States conducted an
IPO with a best-efforts contract that frequently had an AoN feature. We thank Jay Ritter for
providing this example and Steve Kaplan for pointing us to sample proprietary documents of
private placement memoranda.
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correlated with values. Hakenes and Schlegel (2014) argue that endogenous
loan rates and AoN thresholds encourage information acquisition by individ-
ual households in lending-based crowdfunding. Brown and Davies (2020) focus
on a simultaneous-action setting in which threshold implementation, when
set by an entrepreneur after observing the total contribution, creates a losers’
blessing that discourages investors from acquiring information and reduces
financing efficiency.

Instead of introducing moral hazard or financial constraints, we offer the
first dynamic model of sequential contribution under threshold implementa-
tion. Our emphasis on observational learning, a salient feature of crowdfund-
ing and support-gathering processes in real life, distinguishes our paper from
and complements existing crowdfunding literature such as Kremer (2002) and
García and Urošević (2013).3 While demand is exogenous in Strausz (2017), in
our setting demand during the crowdfunding campaign is endogenously deter-
mined by both the true underlying quality of the project and dynamic learning
under informational frictions. We also confirm the superiority of AoN designs
over “keep-it-all” designs in a dynamic environment and the value of commit-
ting to threshold implementation for improving financing efficiency (for which
Brown and Davies (2020) provide an example under simultaneous actions) and
information aggregation.

Models of dynamic learning become complicated very quickly. With respect
to the particular application of our theory, we do not claim to cover all aspects
of crowdfunding, especially those concerning information acquisition and infor-
mation design (e.g., Kremer, Mansour, and Perry (2014); Glazer, Kremer, and
Perry (2015)). Our paper should be viewed as a first step in understanding the
consequences of introducing threshold implementations in dynamic contribu-
tion games with large crowds. Instead of allowing the entrepreneur to possess
private information about production costs as in Strausz (2017), we emphasize
the aggregation of investors’ private signals about project quality. Whereas
Brown and Davies (2020) emphasize investors’ information acquisition, we fo-
cus on entrepreneurs’ ex ante commitment to implementation thresholds in
affecting information aggregation and we derive the optimal thresholds in a
dynamic setting.

The rest of the paper is organized as follows. Section I sets up the model.
Section II characterizes the equilibrium, starting with the subgame of con-
tribution to illustrate the main mechanism before endogenizing contribution
prices and implementation thresholds. Section III discusses model implica-
tions on proposal feasibility, project selection, and information aggregation.
Section IV extends the model to allow options to wait, budget heterogeneity
and thresholds in dollar amounts, and characterizations of other equilibria.

3 An average crowdfunding campaign lasts nine weeks or longer (https://blog.fundly.com/
crowdfunding-statistics/). As Canal (2020) notes, one of the advantages of crowdfunding platforms
is that “users can see the success of a campaign as it progresses,” not to mention the ample empiri-
cal evidence they offer on agents’ sequential arrivals (e.g., Vismara (2018), Deb, Oery, and Williams
(2022)).

 15406261, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13294 by C

ornell U
niversity, W

iley O
nline L

ibrary on [26/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://blog.fundly.com/crowdfunding-statistics/
https://blog.fundly.com/crowdfunding-statistics/


Information Cascades and Threshold Implementation 585

Section V concludes. The Appendix contains proofs. Details on various model
extensions are available in the Internet Appendix.4

I. A Dynamic Model of Crowd-Based Support Gathering

A. Model Setup

Consider a project proposal presented to agents i = 1, 2, . . . , N who sequen-
tially take actions ai ∈ {−1, 1} to either support (ai = 1) or reject (ai = −1) it.5

In the crowdfunding setting, supporting means contributing financially; more
broadly, supporting can be interpreted as adopting or advocating for certain
behaviors by incurring a personal cost. If the proposal is implemented, then
the proposer collects from every supporting agent a prespecified “contribution”
p, and in exchange each agent ultimately receives a project payoff of V , which
is either zero or one.6 Given that crowdfunding often serves a demand discov-
ery function (Strausz (2017)), V can be interpreted as a crude transformation
of the uncertain aggregate market demand, which could be high (V = 1) or low
(V = 0).

A.1. Threshold Implementation

We depart from prior literature on information cascades by incorporating
AoN thresholds commonly observed in practice. The proposer receives “all”
contributions if the campaign reaches a prespecified threshold level of sup-
port and “nothing” otherwise.7 Put differently, the project is implemented if
and only if at least T agents support it, where the threshold T could be exoge-
nous, for example, driven by the need to cover a minimum project scale that is
outside the entrepreneur’s control, once the contribution price is specified. In

4 The Internet Appendix is available in the online version of this article on The Journal of
Finance website.

5 We use the terms “support” and “invest” interchangeably, although our model can be applied
to any situation in which the contribution is nonpecuniary. In practice, crowdfunders typically
observe both the total capital raised and the number of supporters to date (Vismara (2018)), but
this distinction is immaterial in the baseline model. Importantly, our setting differs from that for
voting because noncontributors do not bear any project risk whereas nonvoters typically do face
the consequences of a voting outcome.

6 A separate literature allows price to change dynamically and focuses on asset pricing implica-
tions (Avery and Zemsky (1998); Brunnermeier (2001); Vives (2010); Park and Sabourian (2011)).
We follow the standard cascade models to fix the price for taking an action ex ante, which closely
matches applications in crowdfunding and entrepreneurial finance. In other activities such as po-
litical petitions, p can be interpreted as the supporting effort or reputation cost if the petition goes
through and becomes public.

7 The JOBS Act mandates that crowdfunding platforms adopt threshold implementation
(Sec. 4A.a.7. See http:// beta.congress .gov / bill / 112th- congress / senate- bill / 2190 / text). The
AoN mechanism, alternatively known as a “provision point mechanism,” has also been used in
Regulation D filings since 1982 (Bagnoli and Lipman (1989)). As in Hakenes and Schlegel (2014)
and Chang (2020), we assume that an entrepreneur can commit ex ante to an implementation
threshold.
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many cases (including crowdfunding), however, T is endogenously set by the
entrepreneur, which is equivalent to setting a total dollar amount when agents
face the same contribution price. We discuss thresholds in dollar amount terms
when we consider investor heterogeneity in Section IV.B. Note that supporters
pay p only when the project is implemented. Threshold implementations are
a salient feature of crowdfunding markets, and our contribution is to provide
insights on their informational effects, especially concerning financing and in-
formation aggregation outcomes.

A.2. Agents’ Information and Decision

All agents (indexed by i) and the proposer are rational, risk-neutral, and
share the common prior that the project pays V = 0 and V = 1 with equal prob-
ability. Our specification well describes equity-based crowdfunding and peer-
to-peer lending, which constitute 80% of the entire crowdfunding market as of
2020. Even in the case of reward-based crowdfunding, whereby agents have
private valuations and idiosyncratic preferences, there is a common value that
corresponds to the basic quality of the product. While our specification does not
fully capture cases such as sales of art or music for which private value dom-
inates, the common-value assumption allows unambiguous comparisons con-
cerning project implementation and information aggregation with prior stud-
ies (e.g., Wit (1997)).

Each agent i observes one conditionally independent informative private sig-
nal xi ∈ {1,−1} such that

Pr(xi = 1|V = 1) = Pr(xi = −1|V = 0) = q ∈
(

1
2

, 1
)

. (1)

We denote the sequence of private signals by x = (x1, . . . , xN ) and the set of all
such sequences by X = {1,−1}N .8

The order of agents’ decision making is exogenous and known to all.9

When agent i makes her decision, she observes xi and the history of ac-
tions Hi−1 ≡ (a1, a2 . . . , ai−1) ∈ {−1, 1}i−1. Her strategy can thus be represented
as ai(·, ·) : {1,−1} × {−1, 1}i−1 → �({−1, 1}), which includes mixed strategies
in terms of probability distributions of the action set {−1, 1}. To simplify

8 The binary information and action structure here are standard in the literature (Bikhchan-
dani, Hirshleifer, and Welch (1992)). In Section III of the Internet Appendix, we show that the main
results and intuition are robust to considering multiple investment amounts and asymmetrically
distributed signals.

9 While real-world examples such as crowdfunding may involve endogenous orderings of agents,
our setup allows for a comparison with the large literature on information cascades, which typi-
cally assumes exogenous orders of agents (Kremer, Mansour, and Perry (2014)). Moreover, because,
in practice, agents update their beliefs based on the passage of campaign time (see Herrera and
Hörner (2013)) and use contribution information alone to predict final funding outcomes (Das-
gupta et al. (2020)), our setup can capture the case in which agents can roughly determine their
position in line by referencing the usual accumulation and rejection with the passage of calendar
time. In Section IV.A, we show that our key findings are robust to agents having the option to wait.
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exposition, we define Ai =∑i
j=1 aj1{aj=1}, for 1 ≤ i ≤ N, as the total number

of supporters up to agent i. When 1 ≤ i′ < i ≤ N and Hi′ has the same first i′

elements as Hi, we say that Hi ∈ {−1, 1}i nests Hi′ ∈ {−1, 1}i′ , a concept that we
use in an equilibrium definition below. Agent i’s optimization is given by

max
ai∈{−1,1}

1{ai=1}E
[
(V − p)1{AN≥T} | xi,Hi−1, ai = 1

]
, (2)

where AN is the total number of supporters among all agents, and 1{AN≥T} is
the indicator function for project implementation. Agent i gets zero payoff from
rejecting the proposal (ai = −1) and (V − p)1{AN≥T} from supporting the pro-
posal (ai = 1).10 The parameter ai = 1 appears in the conditioning term in (2)
because, given equilibrium strategies of other agents a∗

−i, subsequent agents’
decisions and project implementation generally depend on agent i’s action.

Following the convention in the literature (e.g., Banerjee (1992); Bose,
Orosel, Ottaviani, and Vesterlund (2008)), we introduce a tie-breaking rule.

ASSUMPTION 1 (Tie-breaking): When the AoN threshold can still be reached
if all remaining agents support, an agent indifferent between supporting and
rejecting always supports.

Threshold implementations introduce strategic complementarity of agents’
actions, which naturally creates equilibrium multiplicity. For example, one
trivial equilibrium entails everyone rejecting and the project failing for sure
regardless of agents’ private signals. So threshold implementations do intro-
duce a downside. Assumption 1, which is an equilibrium refinement, rules out
such equilibria that are undesirable in terms of implementation outcomes.11

Moreover, if one cares about information aggregation even when the project
is not implemented, one faces redundant equilibria that share the same im-
plementation outcomes and payoffs, but with different public information
sets when AoN cannot be reached. We therefore need the following weak
refinement.

ASSUMPTION 2: In equilibria in which the crowdfunding fails (the AoN thresh-
old is not reached), an agent supports if and only if she has a positive pri-
vate signal.

This assumption allows information aggregation to be strictly monotone in AN
(e.g., Proposition 6) and to achieve social efficiency in the large-crowd limit,
even when the crowdfunding fails. It is not needed for other results.

10 We implicitly assume free information acquisition and no contribution cost in the baseline
model. We extend our model to (small) contribution/information acquisition costs in Section II of
the Internet Appendix.

11 We discuss such undesirable equilibria when we extend our model to allow for contribution
or information acquisition costs in Section II of the Internet Appendix.
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A.3. Proposer’s Optimization

Let ν ≥ 0 be the cost per supporter incurred by the proposer. It can be
thought of as the production cost of each product with reward-based crowd-
funding or the private valuation (outside option) of an issuer’s shares when the
project is funded without equity-based crowdfunding. We assume ν <

qN

qN+(1−q)N ,
that is, the cost is below the expected investment payoff when it is public that
all agents have positive signals; otherwise, the project trivially fails to be im-
plemented. Given the campaign length N (the proposer cannot terminate pre-
maturely), a proposer chooses price p and AoN threshold T to solve

max
p,T

π (p, T, N) = E
[
(p − ν)AN1{AN≥T}

]
. (3)

The proposer’s expectation depends on investor agents’ equilibrium strategies
{a∗

i }i=1,2...,N . In the case of fundraising, the proposer maximizes his expected
profit; in nonfinancial scenarios, the proposer solicits the maximum amount
of support, with p interpreted as each agent’s additive amount of support. We
leave alternative funding objectives to future studies.

When an agent’s action does not reflect her private signal, the market fails
to aggregate her dispersed information. Our notion of informational cascade is
then rather conventional (e.g., Bikhchandani, Hirshleifer, and Welch (1992)).

DEFINITION 1 (Information Cascade): An UP cascade occurs following a his-
tory of actions Hn (1 ≤ n < N) if along the equilibrium path, all subsequent
agents support the proposal, regardless of their private signal, while Agent n
herself is not part of any cascade. We denote the set of such histories by HU . A
DOWN cascade is similarly defined, replacing “support” with “reject,” and HU

with HD.

Standard models feature both UP and DOWN cascades. If a few early agents
observe positive signals, their support may push the posterior so high that the
project remains attractive even for someone with a private negative signal.
Similarly, a series of negative signals may doom the offering. An early pre-
ponderance toward supporting or rejecting the projects leads all subsequent
individuals to ignore their private signals, which are then never reflected in
the public pool of knowledge.

B. Equilibrium

We use the concept of PBNE. Each agent’s equilibrium action strategy
a∗

i (xi,Hi−1, p∗, T∗) is a function of her own private signal xi, the history Hi−1,
and the proposer’s choice {p∗, T∗}. Strategic complementarity among agents in-
troduces multiple equilibria that survive Assumption 1. In our baseline anal-
ysis, we focus on a subset of equilibria in which all actions are informative
outside a cascade, as we formalize next.
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Information Cascades and Threshold Implementation 589

DEFINITION 2 (Informer Equilibrium): An equilibrium is an “informer equilib-
rium” if for every i and history Hi−1 ∈ {−1, 1}i−1 that does not nest any history
in HU or HD, agent i’s action varies with xi, that is, ai(1,Hi−1) 	= ai(−1,Hi−1).

In other words, informers’ actions are informative before an information
cascade. Informer equilibria are intuitive and clearly illustrate our economic
insights. In Section IV.C, we analyze all other PBNEs that survive Assumption
1 and establish that these variants asymptotically converge (N → ∞) to the
“informer equilibrium” in pricing, project implementation, and information
aggregation.

C. Benchmark without Threshold Implementation

Consider a benchmark without threshold implementation (equivalently, T =
1), as in Bikhchandani, Hirshleifer, and Welch (1992) and Welch (1992).12 The
project is implemented for sure and an agent’s payoff does not depend on
subsequent agents’ actions. Agent i chooses to support if and only if E[V |xi,

Hi−1] ≥ p.
With exogenous p, both UP and DOWN cascades can occur, which halt

information aggregation. With endogenous p, imprecise signals can cause
“underpricing.”

LEMMA 1: The proposer always charges p ≤ q. In particular, when ν = 0 and
q ≤ 3

4 + 1
4 (3

1
3 − 3

2
3 ) ≈ 0.59, the optimal price is p∗ = 1 − q < 1

2 = E[V ].

Lemma 1 generalizes the underpricing results (ν = 0) in Welch (1992). The
pricing upper bound q is not tight but rather reflects the possibility of early
DOWN cascades.13 If p > q, then even with a positive signal x1 = 1, the first
agent rejects and so does every subsequent agent, yielding zero payoff for the
proposer. The second part of the lemma concerns optimal pricing when agents’
signals are imprecise. UP and DOWN cascades affect the proposer’s payoff
asymmetrically because he benefits from UP cascades by attracting support
from future agents with negative signals while DOWN cascades mean that
a few early rejections may doom his offering. Consequently, he optimally un-
derprices, p = 1 − q < 1

2 , to ensure an UP cascade from the first agent, even
in the presence of a negative signal. Note that the proposer’s incentive to
create an UP cascade dominates because the signal is imprecise, that is, he
does not have to lower the price much to trigger an UP cascade. Moreover, at
the optimal price p = 1 − q, an UP cascade is completely uninformative about
project value.

12 Welch (1992) acknowledges that internalization channels such as threshold implementation
could affect the results and expounds on the possibility that a project’s net present value is lost
unless sufficiently many investors subscribe. We formalize and enrich the discussion with an em-
phasis on the types of cascades that would occur in equilibrium.

13 Without a bound on q, the proposer’s optimal price is either 1 − q or 1
2 .
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II. Equilibrium Characterization

We now solve the equilibrium in several steps. First, we examine agents’
decisions taking the price p and AoN threshold T as given. We then derive
the proposer’s endogenous p and T prior to the crowdfunding and compare
the equilibrium outcomes to the benchmark outcomes without implementa-
tion thresholds.

A. An Illustration with T = 2

Before providing a formal analysis, we illustrate the key economic intuition
through a simple example. Consider a funding campaign with p ∈ ( 1

2 , q) and
N = 3. As in Bikhchandani, Hirshleifer, and Welch (1992), without any AoN
threshold, an UP cascade occurs when both agents 1 and 2 observe positive
signals and choose to support, and a DOWN cascade starts when agent 1 ob-
serves a negative signal and chooses to reject, which leads to agents 2 and 3 to
follow suit regardless of their own signals.

Now suppose that we set the AoN threshold to T = 2. When both agents 1
and 2 receive positive signals and support, agent 3 continues to find the project
attractive regardless of her private signal, that is, threshold implementation
does not affect the UP cascade. When agent 1 observes a negative signal and
rejects the proposal, however, a DOWN cascade no longer occurs. If agent 2
observes a positive signal, her optimal choice is to support because she pays
the price p only when agent 3 chooses to support as well. If agent 3’s signal
is negative, then she finds the project unattractive and chooses to reject, and
the proposal fails to be implemented. Anticipating agent 3’s action, agent 2
effectively pays p only when agent 3 observes a positive signal as well, which
implies that the project is profitable. In a sense, agent 2 is hedged from the
downside risk of supporting.

Note that this argument does not imply that agent 2 supports regardless of
her private signal, because agent 2’s decision is informative for agent 3, and
agent 2 does not want to mislead agent 3. To see this, say that agent 1 supports.
Agent 2 would have incentive to support if she observes a negative signal be-
cause deviating to support would lead agent 3 to (incorrectly) infer that agent
2’s signal is positive and (incorrectly) choose to support and implement the
proposal even if she observes a negative signal.

When the AoN threshold is about to be reached (i.e., when there exist T − 1
supporting agents), we are back to a standard information cascade setting and
both UP and DOWN cascades could happen. To see this, suppose N = 4 while
T = 2. If agent 1 rejects and agent 2 supports, and agent 3 observes a negative
signal and chooses to reject, then there is a DOWN cascade and agent 4 will
reject regardless of her private signal. However, given agent 2’s support, the
project is certainly implemented if agent 4 contributes.

B. Observational Learning under Threshold Implementation

As seen in the simple example, no DOWN cascade occurs before the AoN
threshold is approached. When the AoN threshold is about to be reached, the
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Information Cascades and Threshold Implementation 591

model reduces to a standard cascade setting and both UP and DOWN cascades
become possible. Define ki as the difference between the number of inferred
positive signals and inferred negative signals up to agent i. Then, ki depends
on both the history Hi and agents’ equilibrium strategies (which affect how
informative the action history is). Similar to Bikhchandani, Hirshleifer, and
Welch (1992), below we show that the public posterior valuation of the project
follows

Pr(V = 1|Hi) = qki

qki + (1 − q)ki
≡ Vki . (4)

We define k̄(p) ≡ min{k | p ≤ Vk, k ∈ Z} be the minimum number of “excess”
inferred positive signals needed to form a posterior valuation that is weakly
higher than the contribution p, where Z denotes the set of integers. We then
have the following proposition.

PROPOSITION 1: For any given pair of (p, T ), a unique informer equilibrium ex-
ists. In equilibrium, when there is no cascade yet, an agent supports if and only
if the private signal is positive. Importantly, an UP cascade occurs following
history Hi when ki ≥ k̄(p) + 1, while a DOWN cascade occurs following history
Hi only when Ai ≥ T − 1 and ki < k̄(p) − 1.

As in the earlier example, Proposition 1 shows that there is no DOWN cas-
cade before approaching the AoN threshold (Ai−1 < T − 1) and all actions are
informative unless a cascade immediately follows. When Ai−1 = T − 1, agent i
and subsequent agents face exactly the same decision as in standard cascade
models, and they update beliefs accordingly.

In stark contrast to the benchmark without threshold implementation,
DOWN cascades disappear before approaching the AoN threshold (Ai−1 <

T − 1) because an agent with a positive signal is protected when supporting,
in that, she does not pay if the project turns out to be bad and does not achieve
enough support to be implemented. The agent observing T − 1 prior support-
ers is the “gatekeeper” for all prior supporters because her decision affects
whether other supporters incur the contribution cost and receive the project
payoffs. Because she observes a longer history and makes a more informed de-
cision, prior supporters benefit from “delegating” the implementation decision
to her.

Having said that, observing a longer history is helpful only when actions
convey private information. To complete the argument above, we argue that
when there is no UP cascade yet and before the AoN threshold is approached,
agents with negative signals reject the proposal: If an agent with a negative
signal deviates and supports, then all subsequent agents would misinterpret
her action and form incorrect posterior beliefs. The overoptimistic beliefs would
imply that subsequent agents start an UP cascade too early or reach the AoN
threshold when the true posterior is not high enough. As a result, agents
with negative signals find deviations unattractive. Interestingly, here the
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Figure 1. Evolution of support-reject differential. This figure plots simulated paths for
N = 40, q = 0.7, p∗ = V4 = 0.9673, and AoN threshold T∗(N) = 22. Case 1 indicates a path that
crosses the cascade trigger k̄(p) + 1 = 5 at the 26th agent, with all subsequent agents supporting
regardless of their private signal. Case 2 indicates a path with no cascade, but the project is still
funded by the end of the fundraising. Case 3 indicates a path where the AoN threshold is not
reached and the project is not funded. The orange shaded region above the AoN line indicates that
the project is funded. (Color figure can be viewed at wileyonlinelibrary.com)

information breakdown associated with UP cascades facilitates information
aggregation before k̄ + 1 is reached.

Note that an UP cascade can still occur before reaching the AoN threshold
due to the asymmetry between the payoffs of supporting versus rejecting. A
rejecting agent does not share the upside if the eventual posterior valuation
makes supporting profitable and the project is implemented. Yet, a supporting
agent is hedged from potential losses, making agents more motivated to sup-
port (and potentially creating UP cascades). We illustrate the two scenarios
(with and without an UP cascade) with project implementation in Figure 1,
which plots the difference between supporting agents and rejecting agents
when n agents have arrived. The figure also includes a sample path of eventual
implementation failure (i.e., the AoN threshold is not reached).

B.1. Exogenous Price or AoN Threshold

Proposition 1 characterizes the subgame-perfect equilibrium from which we
build to endogenize p and T . It also provides insights into the situation in
which the entrepreneur has little say in the price and funding target. For
example, T could be the minimal capital required to fund a film production
that is exogenous to the model. Because the proposition holds for any p and
T , the asymmetry in information cascades holds whenever we have threshold
implementation.
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Information Cascades and Threshold Implementation 593

C. Optimal Price and AoN Threshold

In practice, project proposers and entrepreneurs typically set contribution
prices and implementation thresholds. We next endogenize the proposer’s
choices in the model. We find two main effects. First, they essentially rule out
DOWN cascades even after the thresholds are approached. Second, they make
the optimal price depend on the number of agents. The two effects jointly affect
proposal feasibility, project selection, and information aggregation, especially
with large crowds.

PROPOSITION 2: For each N, an informer equilibrium exists in which the pro-
poser’s optimal proposal choice {p∗, T∗} satisfies p∗ = Vk∗ and T∗ = �N+k∗

2 
, for
some integer k∗ ∈ {−1, 0, . . . , N}.
Proposition 2 establishes the equilibrium existence and shows that the set of
potential optimal prices and AoN targets is finite. To see this, notice that based
on Proposition 1, for a given T , any p ∈ (Vk−1,Vk] induces the same support-
ing decisions. The proposer always finds that p = Vk strictly dominates any
p ∈ (Vk−1,Vk). We can therefore focus our analysis on p ∈ {V−1,V0, . . . ,VN}. We
exclude k < −1 because V−1 = 1 − q is already sufficiently low to induce an UP
cascade from the very beginning. Different from Proposition 1, it is possible
to have multiple equilibria here because more than one k∗ may generate the
same maximum expected revenue for the proposer.

In equilibrium, the proposer chooses the optimal level of the AoN threshold
jointly with price to maximize the expected revenue. The proposer is concerned
about DOWN cascades because once they start, subsequent agents all reject.
As shown in Proposition 1, there is no DOWN cascade before approaching the
threshold. For a given equilibrium price Vk∗ , a higher AoN target reduces the
possibility of DOWN cascades or delays their arrival, so that the proposer can
collect more proceeds conditional on implementation. Yet, a higher threshold
itself is more difficult to reach. The proposer facing the tradeoff finds the op-
timal AoN threshold to be the one that is just large enough to exclude DOWN
cascades that reduce total expected proceeds. The following corollary charac-
terizing DOWN cascades proves useful for our discussion of model implications
below.

COROLLARY 1 (Unidirectional Cascades): With endogenous threshold imple-
mentation and contribution price, the necessary and sufficient condition for a
DOWN cascade entails only the last agent (i = N) herding (i.e., ignoring the pri-
vate signal and rejecting) and an implementation failure even when all private
signals are aggregated publicly.

Corollary 1 implies that for all practical purposes, all surviving DOWN cas-
cades are of no concern here because they can start only from the last agent
and do not affect project implementation. To see this, notice that when the
price is p = Vk, if the DOWN cascade starts with agent N but not agent N − 1,
agent N − 1 must be rejecting due to a negative signal instead of herding to
reject despite having a positive signal. In that case, the public valuation before
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594 The Journal of Finance®

Figure 2. Proposal profit as a function of price. This figure plots simulated expected profit
as a function of price for N = 2, 000, ν = 0, and q = 0.55. For each price Vk, the threshold is set as
the optimal one given the price T = � N+k

2 
. The optimal k∗ = 13, and the profit-maximizing price
is around 0.93. (Color figure can be viewed at wileyonlinelibrary.com)

agent N − 1’s action cannot be less than Vk−1, as otherwise she would already
start a DOWN cascade. Moreover, the public valuation just before agent N’s
action cannot be bigger than Vk−2, as otherwise she is not guaranteed to start
a DOWN cascade.

Overall, we find that agent N − 1 must observe a negative private signal
xN−1 = −1, and the valuation of the project based on public information be-
fore her action is Vk−1. As such, even with all N private signals aggregated,
the project has a maximum expected value of Vk−1, which is smaller than the
price and consistent with a DOWN cascade in which the project is rejected by
the last agent regardless of her private signal. Such a DOWN cascade does
not affect the proposer’s payoff much and has almost no impact on information
aggregation. The unidirectional nature of potential cascades turns out to have
important implications for project implementation and information aggrega-
tion, as we demonstrate in Section III.

We next turn to optimal pricing. Without an AoN threshold, that is, T = 1,
the concern about DOWN cascades is so severe that in equilibrium the pro-
poser avoids DOWN cascades by choosing a sufficiently low price to trigger
an UP cascade at the very beginning (Lemma 1). Endogenous AoN thresholds
mitigate this concern. The optimal pricing problem is now very similar to that
in the auction literature: A higher price allows the proposer to extract more
rent from each supporter, but is associated with a higher optimal AoN target,
reducing the probability of implementation. Figure 2 illustrates how the en-
trepreneur’s profit, which depends on implementation outcomes, varies with
the optimal AoN threshold and thus its corresponding price.

Recall that in Lemma 1 without threshold implementation, the optimal price
is independent of the number of agents when there is no AoN threshold. With
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Information Cascades and Threshold Implementation 595

Figure 3. Cascades and optimal prices as N changes. This figure shows the numerical solu-
tion of optimal price as a function of N for ν = 0. The blue plots represent the case in which q = 0.7,
and the orange plots represent the case in which q = 0.6. Panel A plots the optimal price Vk, while
Panel B shows the corresponding k∗. (Color figure can be viewed at wileyonlinelibrary.com)

AoN thresholds, the number of remaining agents and thus the total number
of agents do affect k∗. Proposition 2 implies that the optimal price depends on
the number of agents N. The following proposition shows that, in general, the
optimal price p∗ increases as N increases.

PROPOSITION 3: The optimal price p∗ depends on N and has a lower bound
that is weakly increasing in N and approaches one as N → ∞. In particular,
limN→∞ p∗(N) = 1.

A larger agent base implies a greater chance to learn about the project’s qual-
ity. Because the probability of reaching a certain AoN target is higher for good
projects, the concern about implementation failure is less pronounced, allow-
ing the proposer to set the optimal price higher to increase expected proceeds.
Figure 3 shows the optimal pricing for different values of N, where Panel A
plots the absolute price level and Panel B plots the associated k∗. With an en-
dogenous AoN threshold, the proposer can charge a higher price for a larger
crowd, which can even appear “overpriced” ex ante, that is, p > E[V ]. Our find-
ings on pricing are important because the under- or overpricing of securities or
products may affect the success or failure of a project proposal and in turn the
real economy (Welch (1992)). We discuss these model implications next.

III. Implications of Threshold Implementation and Large Crowds

Two key functions of modern financial markets and digital platforms are
funding good projects and aggregating localized/decentralized information to
inform investors’ and policymakers’ decisions. One feature that distinguishes
crowdfunding platforms from venture capital lies in the large crowds they ac-
cess. For example, according to Kickstarter’s official statistics as of November
2020, the crowdfunding platform has 18.87 million total backers and the top 10
most popular projects have 74,410 to 219,380 backers, and the Crowdfunding
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Center reports that fully funded projects have on average 300 backers.14 In this
section, we examine the immediate implications of AoN thresholds for project
implementation and information aggregation as well as equilibrium outcomes
when the crowd size becomes large.

We show that threshold implementations generally improve proposal fea-
sibility, project selection, and information aggregation. In the limit of large
crowds, we prove that project implementation and information aggregation
become fully efficient—results not obtainable in earlier models of dynamic ob-
servational learning and crowdfunding.

A. Project Implementation

A financial marketplace serves to match capital with worthy projects. It is so-
cially efficient to ensure that good projects and good projects only are financed.

A.1. Proposal Feasibility

Lemma 1 establishes an upper bound on the price in standard cascade mod-
els above which the proposal is infeasible, that is, good projects with produc-
tion cost ν > q cannot be supported because even the break-even price triggers
DOWN cascades. Threshold implementations allow proposers to charge p > q
and still implement the projects.

PROPOSITION 4: Projects with ν > q cannot be implemented without AoN
thresholds; all projects have a positive ex ante probability of being implemented
under endogenous pricing and AoN thresholds.

Obviously, projects with ν > VN cannot be financed because agents’ posterior
valuation can never exceed VN . Charging p > ν does not trigger a DOWN cas-
cade if T is set to be sufficiently high. As a result, crowdfunding and the like
with endogenous AoN thresholds or sufficiently high exogenous thresholds en-
able the financing of projects with high production costs for which funding
would otherwise be infeasible (Welch (1992)). This result is consistent with
Mollick and Nanda (2015), who empirically document that crowdfunding is
more likely to finance projects with costly production that a group of experts
would not finance in traditional settings.

A.2. Project Selection

Without threshold implementation, UP cascades start from the very begin-
ning and all projects are implemented, resulting in a poor project selection
(Welch (1992)). With AoN thresholds, DOWN cascades do not occur before
reaching the implementation threshold, neither do UP cascades start from

14 See, for example, https://www.statista.com/statistics/288345/number-of-total-and-repeat-
kickstarter-project-backers/, https://www.statista.com/statistics/378054/most-backed-kickstarter-
projects/, and https://www.thecrowdfundingcenter.com/data/projects.
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the beginning. Thus, good projects have a higher chance of reaching the tar-
get threshold due to prolonged public information aggregation before any cas-
cade.15 Project selection therefore improves. In other words, given q > 1

2 and
since we focus on informer equilibria, good projects are more likely to be im-
plemented than bad projects (i.e., Pr(AN ≥ T |V = 1) ≥ Pr(AN ≥ T |V = 0)). We
then have the following proposition.

PROPOSITION 5: Let PI ≡ 1 − Pr(AN ≥ T |V = 1) and PII ≡ Pr(AN ≥ T |V = 0).
Then, limN→∞ PI

N = limN→∞ PII
N = 0.

Note that PI and PII correspond to the probabilities of missing a good project
(Type I error) and financing a bad project (Type II error). While N does not
matter in standard cascade models, threshold implementation links the tim-
ing and correctness of cascades to the size of the crowd. Both types of errors
approach zero as N becomes large because a larger crowd implies a higher
endogenous optimal price, which delays the arrival of UP cascades and im-
proves the correctness of implementation. In general, while UP cascades do
lead to some bad projects being financed, such Type II errors are not as fre-
quent as in Welch (1992) and Lemma 1, in which all bad projects are financed
with endogenous pricing and the probability of the cascade being correct is 1

2
(i.e., uninformative). In our setting, the wisdom of the crowd is fully harnessed
to distinguish good projects from bad ones. As for the allocation of surplus, in-
vestors’ share vanishes in the limit because the price approaches the true value
of a good project, and the proposer eventually gets all of the surplus from the
project implementation.

B. Information Aggregation

Sequential support-gathering processes such as crowdfunding allow the
market to aggregate investors’ private signals and (partially) reveal the aggre-
gated information to the public. Recent studies provide both theoretical argu-
ments (Strausz (2017); Chemla and Tinn (2020); Brown and Davies (2020)) and
empirical evidence that entrepreneurs use crowdfunding as an information ag-
gregation mechanism (Mollick and Kuppuswamy (2014); Da Cruz (2018); Xu
(2017)).16

The previous section on better project selection partially reflects better infor-
mation aggregation. We now formalize the result on information aggregation,

15 Unidirectional cascade and threshold implementation also imply that offerings in our setting
can fail, in contrast to offerings never failing in Welch (1992). Our model is thus consistent with
the possibility that some offerings fail occasionally and/or are withdrawn without having to invoke
insider information as Welch (1992) does.

16 Reduction of search and matching effort, divisibility of funding and low communication costs,
greater outreach, decentralized participation, timely disclosure and monitoring, and so forth are
generally recognized as key advantages of Internet-based platforms for aggregating information
and harnessing wisdom from the crowd. In fact, the Securities and Exchange Commission (SEC)
also recognizes in its final rule regulating crowdfunding that “individuals interested in the crowd-
funding campaign – members of the ‘crowd’...fund the campaign based on the collective ‘wisdom of
the crowd”’ (Li (2017)).
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598 The Journal of Finance®

which complements but differs from project selection.17 In particular, informa-
tion aggregation generally improves even in the event of crowdfunding failure.

PROPOSITION 6: Crowdfunding, successful or not, is informative of project
quality: E[V |HN] is weakly increasing in AN and E[V |HN, AN < T∗] is strictly
increasing in AN.

Different from standard cascade models with DOWN cascades conditional
on failing to reach the AoN threshold, the proposer updates beliefs more pos-
itively with more supporting agents. Our model has the natural implication
that the belief updates on V based on incremental support are smaller, con-
ditional on project implementation, because they likely involve an UP cascade
and information aggregation is more limited. This is consistent with Xu (2017),
who finds that conditional on fundraising success, a 50% increase in pledged
amount leads to a 9% increase in the probability of commercialization out-
side the crowdfunding platform—a small sensitivity of the project prospects to
changes in the level of support.

Note that we achieve full information aggregation in the large-crowd limit as
a direct consequence of Proposition 5. Because good projects and good projects
only are funded in the limit, one knows V = 1 or V = 0 based on the implemen-
tation outcome by the end of the crowdfunding, which is public information.

IV. Discussion and Extensions

A. Option to Wait

Potential crowdfunding contributors often cannot or do not wait because of
nontrivial attention or monitoring costs. Moreover, because the shares or prod-
ucts sold are often in limited supply, waiting may lead an agent to miss out on
the opportunity. That said, in some cases, agents may choose to wait for more
information. We now extend the model by expanding agents’ action space to
at

i ∈ {−1, 0, 1}, where zero indicates that agent i delays her decision in period
t to the next period. Agents can continue waiting until the last period. In any
period t, after agent t’s decision, all agents waiting from earlier periods make
decisions one at a time (ordered by their first arrival time). We stick with the
tie-breaking rules above in this extension. Section I of the Appendix contains
a formal description of the extension. The option to wait results in potential
equilibrium multiplicity due to the coordination problem on waiting decisions
and off-equilibrium beliefs. Nevertheless, the equilibrium characterized in
Proposition 1 survives in a slightly modified form.

17 Project selection discussed earlier corresponds to Pr(AN ≥ T |V = 1) ≥ Pr(AN ≥ T |V = 0),
which is not the same as good projects being more likely to have a higher AN . We can show that
V = 1 does indeed lead to higher AN in expectation, but it is equivalent to Proposition 6 (a higher
AN indicates that the project is more likely to be good) only under the common prior belief on V
that V = 0 and V = 1 with equal probability. In general, project selection and information aggre-
gation results differ under Bayesian updates.
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Information Cascades and Threshold Implementation 599

PROPOSITION 7: For any given (p, T ), a subgame-perfect equilibrium exists
in which those agents who would reject under Proposition 1 now delay their
actions as much as possible while those who would support under Proposition 1
support upon their first opportunity to do so.

Proposition 7 shows that given (p, T ), the option to wait does not affect in-
formation aggregation because a decision to wait reveals a negative signal. In
the case of an UP cascade, no one wants to deviate to wait. Now suppose there
is no cascade yet. Agents with positive signals will support because supporting
always dominates rejection and thus there is no need to wait in this equilib-
rium. For agents with negative signals, however, waiting until the end weakly
dominates rejection and hence they wait. The next proposition shows that with
endogenous (p, T ), our finding on project implementation with large crowds is
robust to options to wait.

PROPOSITION 8: When agents can wait, there exists a sequence of equilibria as
N → ∞ in which the optimal price p∗

N → 1. In the limit, all agents support good
projects and good projects only, that is, the first-best project implementation
is obtained.

The intuition for this result is similar to that for Corollary 3. The absence
of DOWN cascades helps investors avoid missing good projects and the high
price screens out bad projects whose valuation cannot be sufficiently high as
information arrives and gets aggregated. Notably, because agents with nega-
tive signals who wait can still invest or support later to not miss out on good
projects, the project’s scale reaches full efficiency in the limit, which is the
first-best outcome not achievable without agents’ option to wait.

B. Investor Heterogeneity and Dollar Amount Thresholds

According to the Crowdfunding Center, successful campaigns rely on large
numbers of comparable, small contributions instead of concentrated, large con-
tributions. Therefore, in the baseline model, the homogeneous contribution
amount and threshold specification in the number of supporters reasonably
balance tractability and realism. Nevertheless, many crowdfunded projects of-
fer multiple contribution levels and require that a minimum dollar amount
be met to be feasible. We next extend the model to illustrate the effects of
investor heterogeneity in wealth and of implementation thresholds involving
dollar amounts. We demonstrate a novel phenomenon of “prolonged learn-
ing” through partial support, which derives from a hitherto absent “fund-
ing gap versus belief gap” tradeoff. Sections I and IV of the Internet Ap-
pendix formalize the key insights and provide numerical procedures for design-
ing optimal AoN thresholds under investor heterogeneity and dollar amount
thresholds.

EXAMPLE 1: Suppose there are 30 agents. Each agent can choose {H, L, 0},
where H = 1 and L = 0.3 are contribution levels that the entrepreneur speci-
fies. Poorer agents can only afford L. The project payoff is still V = 0 or 1 per
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600 The Journal of Finance®

dollar contribution. The AoN target is T = 10.1. Now consider a history such
that Ai−1 = 9, ki−1 = k̄(p) − 3. Suppose xi = 1. Should a rich agent i fully sup-
port (ai = H), partially support (ai = L), or reject (ai = 0)?

Agent i understands that she gets nothing if she rejects. If she chooses to
fully support with H, then Ai = Ai−1 + 1 = 10 and ki = ki−1 + 1 = k̄(p) − 2. In
equilibrium, even if the next three agents (i.e., i + 1, i + 2, i + 3) all receive pos-
itive signals, agent i + 1 (without knowing subsequent agents’ signals) chooses
not to support and starts a DOWN cascade. Consequently, agent i gets zero
payoff. However, if agent i chooses partial support L, then Ai = Ai−1 + 0.3 = 9.3
and ki = ki−1 + 1 = k̄(p) − 2. If the next three agents are poor but all receive
positive signals and are of type L, then we have ai+1 = ai+2 = ai+3 = L = 0.3,
ki+3 = k̄(p) + 1, and Ai+3 = 10.2 > 10.1 = T , in which case the project will be
implemented and agent i receives a positive profit.

In this example, considering all of the options, partial support (L = 0.3) evi-
dently can be preferred because it generates a positive expected payoff. Hence,
it would be naive to conclude that one always contributes to the full extent pos-
sible if one supports, or that a wealthier agent never makes a low contribution.
As we show in the Internet Appendix, in equilibrium, agents with negative
signals refrain from contributing. But with positive signals, the example
reveals that it could be optimal for a rich agent to switch their contribution
from H to L to prolong learning at the expense of slower fundraising.

When the funding gap (the additional support needed to reach implemen-
tation) is small but the belief gap (the distance to the break-even valuation)
is still large, an agent uses partial support to create “prolonged learning” be-
cause partial support allows for more rounds of trials before triggering imple-
mentation or a DOWN cascade. Such episodes of prolonged learning may occur
multiple times before the agent eventually returns to full support or a DOWN
cascade takes place, depending on whether the break-even belief (captured
by k̄(p) in the baseline model) is reached. This tradeoff between reaching the
implementation threshold and allowing for more observational learning can
affect the ex ante information design of the crowdfunding, which constitutes
an interesting topic for future research.

Moreover, in the Internet Appendix, we demonstrate that with variable dol-
lar amount contributions, the entrepreneur can no longer extract the full sur-
plus even as N goes to infinity. To extract the full surplus, the proposer needs
to set prices such that all agents are indifferent between supporting and reject-
ing. This is problematic here because if the price is high enough to approach
Vk̄ (a necessary condition for full surplus extraction) and the gap between H
and L is too big, then an agent will switch from high support to low support to
prolong the campaign and information aggregation. As such, there exist some
signal sequences such that an UP cascade is more likely to happen, which gen-
erates a positive payoff to the agents. Note that in an UP cascade, the agent
with a positive signal must be getting some positive payoff, because she also
supports the project when her signal is negative, which generates a lower but
still nonnegative payoff.
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Information Cascades and Threshold Implementation 601

Note that similar to adding options to wait, enlarging agents’ action space
augments the communication space as well. Consequently, multiple equilib-
ria may exist. For example, with small p and N but a relatively large T , the
threshold is sufficiently far away that a contribution L would still allow suffi-
cient subsequent signal aggregation. Yet, as long as contributing L would not
mislead subsequent agents too much, the equilibrium belief is that both rich
agents with negative signals and poor agents with positive signals will con-
tribute L, and the proportion of rich agents is sufficiently large. This way, rich
agents with negative signals can still be protected from below while not miss-
ing out on the investment. We leave a more comprehensive characterization of
various equilibria to future work.

C. Free Riders and Characterization of All Equilibria

We can characterize PBNEs satisfying Assumptions 1 and 2 even beyond in-
former equilibria—a daunting task that most models of observational learn-
ing leave out. We first show that all possible equilibria involve a group of
“informers” and a group of “free riders” whose actions before a cascade are
ignored in equilibrium. Mathematically, agent i is considered a free rider if
E[V |Hi−1] = E[V |Hi] < Vk̄(p)+1 before any UP cascade. In other words, follow-
ing subhistory Hi−1, it is common knowledge that subsequent rational agents
would not update their beliefs based on agent i’s action, even though an UP
cascade has not started yet.

Free riding differs from information cascades. Although an agent’s action is
uninformative as in information cascades, agents can still take informative ac-
tions after the free rider’s move, and information aggregation resumes until a
cascade starts, another free rider appears, or the game ends. We call an equi-
librium with a positive number of free riders a free-rider equilibrium. To give
an example, suppose ν < 1

2 , p = 1
2 = q0

q0+(1−q)0 , and the target is T = N. Then,
there is a subgame free-rider equilibrium in which all agents but the Nth agent
support regardless of their private signal, and the Nth agent supports if and
only if xN = 1.

In a free-rider equilibrium, which agents become free riders is generally
path-dependent (i.e., specific to sequential realizations of private signals).
Whether an agent becomes a free rider depends on subsequent agents’ higher
order beliefs. As in the informer equilibrium, such a phenomenon does not exist
in conventional models because absent threshold implementation, the agent’s
expected payoff at the time of decision making is independent of subsequent
agents’ actions.

LEMMA 2: Under Assumption 1 for tie-breaking, a PBNE is either an in-
former equilibrium or a free-rider equilibrium. For p ∈ {Vk, k = −1, 0, . . . N},
all free-rider subgame equilibria are weakly Pareto-dominated by the informer
subgame-perfect equilibrium described in Proposition 1. Free-rider subgame
equilibria involving at least two free riders are strictly Pareto-dominated.
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602 The Journal of Finance®

To analyze the large-crowd limit, we use a standard equilibrium selection
based on payoff dominance (Harsanyi and Selten (1988), which can be mo-
tivated in our context by communications before agents receive signals) to
focus on Pareto-undominated subgame equilibria. This refinement rules out
nuisance equilibria such as the example given before Lemma 2 in which in-
vestors coordinate on Pareto inferior outcomes, but still allows the large class
of free-rider equilibria for general p 	∈ {Vk, k = −1, 0, . . . N}.18 Under the refine-
ment, when p ∈ {Vk, k = −1, 0, . . . N}, we only need to consider informer equi-
libria and free-rider equilibria with one free rider. This allows us to show that
the number of informers is unbounded as N increases and that informer and
Pareto-undominated free-rider equilibria deliver qualitatively the same results
as N → ∞.

PROPOSITION 9: In any sequence of endogenous designs {p(N), T (N)}∞N=1 and
Pareto-undominated subgame equilibria, as N → ∞, p∗(N) → 1, good projects
and good projects only are implemented, and public posterior valuation con-
verges to the true quality V.

The proposition implies that no matter which equilibrium is selected among
all the Pareto-undominated ones, in the limit the proposer charges a high
enough price to preclude DOWN cascades and ensure both efficient project im-
plementation and full information aggregation. In the proof, we actually show
that for large N, implementation efficiency and information aggregation gen-
erally improve relative to those in standard information cascade settings with-
out threshold implementations. Given that financing projects and aggregating
information are arguably the most important functions of financial markets,
the impact of threshold implementation, especially with large crowds, cannot
be overstated.

V. Conclusion

We incorporate AoN threshold implementation into a standard model of
information cascades and find that agents’ payoff interdependence results in
unidirectional cascades in which agents rationally ignore private signals and
imitate prior agents only if the prior agents decide to support. Information
aggregation, proposal feasibility, and project selection all improve. As the
number of agents approaches infinity, equilibrium project implementation and
information aggregation achieve socially efficient levels despite information
frictions. These findings add to theories of observational learning and dynamic
contribution games, as well as to the emerging literature on entrepreneurial
crowdfunding and FinTech platforms.

An important implication of our model is that digital funding platforms
can help entrepreneurs access a larger agent base to better harness the
wisdom of the crowd than traditional funding channels, as envisioned by

18 Note that nuisance equilibria can also be ruled out by considering agents’ option to wait.
Obviously, every agent observing signal xi = −1 is better off waiting.
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Information Cascades and Threshold Implementation 603

regulatory authorities. We show that specific features and designs such as
endogenous AoN thresholds are crucial to capitalizing on these potential
benefits, especially for sequential sales in the presence of informational fric-
tions. For parsimony and generality, we leave out some application-specific
details. For instance, third-party certification can impact crowdfunding
outcomes (Knyazeva and Ivanov (2017)). In addition, a project proposer
may price discriminate or control the information flow to potential in-
vestors. Incorporating these institutional features and jointly considering
information and mechanism designs constitute promising future research
topics.

Initial submission: February 26, 2019; Accepted: March 24, 2022
Editors: Stefan Nagel, Philip Bond, Amit Seru, and Wei Xiong

Appendix

A. Proof of Lemma 1

PROOF: For agent 1, her posterior belief after observing x1 = 1 is E[V |x1 = 1] =
q. If p > q, then agent 1 chooses rejection regardless of her private signal, and
a DOWN cascade starts from the beginning for sure. We thus have the first
part of the lemma.

Similarly, p = 1 − q = E[V |x1 = −1] induces an UP cascade starting from
the beginning for sure, and hence the entrepreneur or proposer has no in-
centive to charge p < 1 − q. Therefore, p ∈ [1 − q, q]. Following Bikhchandani,
Hirshleifer, and Welch (1992), the common posterior belief of Bayesian agents
follows

Vk = qk

qk + (1 − q)k
, k ∈ Z, (A.1)

where k is the difference between the number of inferred positive signals and
the number of inferred negative signals. For each p ∈ (Vk−1,Vk], p = Vk in-
duces exactly the same decisions and, in turn, the same number of support-
ing agents, so in equilibrium the proposer always charges p∗ = Vk for some
k ∈ {−1, 0, 1, . . . , N}. Consequently, only three prices are possible: 1 − q, 1

2 , and
q. Let �(p, N) be the expected profit when the price is p and there are N ≥ 2 po-
tential agents. Without AoN thresholds, �(p, N) is obviously increasing in N.
Next, we examine the three possible optimal prices and show that p = 1 − q
dominates.

(i) p = 1 − q: The total profit is (1 − q)N when ν = 0.
(ii) p = 1

2 : After the first two observations, (x1, x2) = (−1,−1) induces a
DOWN cascade yielding zero profit, (1,−1) and (1, 1) both induce a
UP cascade at agent 1 due to the tie-breaking assumption, which leads
to an expected payoff of q+(1−q)

2
1
2 N, and (−1, 1) does not change subse-

quent agents’ belief. Therefore, �( 1
2 , N) = q+(1−q)

2
1
2 N + q(1−q)+(1−q)q

2 ( 1
2 +
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�( 1
2 , N − 2)) ≤ 1

4 N + (1 − q)q( 1
2 + �( 1

2 , N)). Thus, p = 1
2 is dominated by

p = 1 − q if

�(p, N) ≤
N
4 + (1−q)q

2

1 − (1 − q)q
≤ (1 − q)N for N = 2, 3, . . . , (A.2)

which holds for q ∈ ( 1
2 , 3

4 + 1
4 (3

1
3 − 3

2
3 )].

(iii) p = q: After the first two observations, (1, 1) induces an UP cas-
cade, (−1,−1) and (−1, 1) both induce a DOWN cascade after
agent 1, and (1,−1) does not change the belief. The expected profit
is �(p, N) = (1−q)2+q2

2 qN + q(1−q)+(1−q)q
2 (q + �(p, N − 2)) ≤ (1−q)2+q2

2 qN +
(1 − q)q(q + �(p, N)). Thus, p = q is dominated by p = 1 − q if

�(p, N) ≤
(1−q)2+q2

2 qN + q2(1 − q)
1 − (1 − q)q

≤ (1 − q)N for N = 2, 3, . . . . (A.3)

One can verify that the inequality holds for q ∈ ( 1
2 , 3

4 + 1
4 (3

1
3 − 3

2
3 )]. �

B. Proof of Proposition 1

PROOF: We first analyze the dynamics of common posterior belief given the
truth-telling contribution strategy before any cascades. Notice that given truth
telling, when there is no cascade yet, ki, the difference between the number of
inferred positive signals and the number of inferred negative signals, is the
same as the difference between the number of private positive signals and the
number of negative private signals. Then, as in Bikhchandani, Hirshleifer, and
Welch (1992), the common posterior belief of Bayesian agents follows

Vki = qki

qki + (1 − q)ki
, k ∈ Z. (A.4)

We prove the result by induction on the length of the history i ∈ {0, 1, . . . , N},
where H0 = ∅. For i = 0, E[V |H0] = 1

2 = V0.
Suppose the statement is true of all histories Hl (l ≤ i), that is, E[V |Hl] =

Vkl
. Now consider a history Hi+1. If there is no cascade yet, then Bayes’ rule

implies

E[V |Hi+1] = Pr(V = 1|Hi+1) = Pr(V = 1|ai+1,Hi)

= Pr(Hi) Pr(V = 1|Hi) Pr(ai+1|V = 1,Hi)∑
j∈{0,1} Pr(Hi) Pr(V = j|Hi) Pr(ai+1|V = j,Hi)

= Vki Pr(ai+1|V = 1,Hi)
Vki Pr(ai+1|V = 1,Hi) + (1 − Vki ) Pr(ai+1|V = 0,Hi)

= qki+1

qki+1 + (1 − q)ki+1
. (A.5)
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Information Cascades and Threshold Implementation 605

If there is a cascade, then by definition the public does not infer anything from
agent i + 1’s action, ki+1 = ki, and E[V |Hi+1] = Vki .

Given the results above, we formally characterize the equilibrium contribu-
tion strategy and the evolution of the public posterior as follows:

a∗
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xi if A(Hi−1) < T − 1 & ki−1 ≤ k̄(p)
1 if ki−1 > k̄(p)
−1 if A(Hi−1) ≥ T − 1 & ki−1 < k̄(p) − 1
xi if A(Hi−1) ≥ T − 1 & ki−1 ∈ {k̄(p), k̄(p) − 1}

, (A.6)

ki =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ki−1 + a∗
i if Ai−1 < T − 1 & ki−1 ≤ k̄(p)

ki−1 if ki−1 > k̄(p)
ki−1 if Ai−1 ≥ T − 1 & ki−1 < k̄(p) − 1
ki−1 + a∗

i if Ai−1 ≥ T − 1 & ki−1 ∈ {k̄(p), k̄(p) − 1}.

(A.7)

Notice that by definition, A0 = k0 = 0 to match the prior. We call the agent
observing T − 1 preceding supporters the “gatekeeper” for all preceding sup-
porters because her decision affects whether other supporters incur the con-
tribution cost and receive the project payoffs. In equilibrium, agents are truth
telling and the public posterior updates before any cascades. To prove that the
characterization in Proposition 1 constitutes a PBNE, we first state and prove
Lemma A.1—the expected value of the adoption is bounded above by Vk̄(p)+1.
In fact, an UP cascade starts once a strong expectation is formed and it blocks
further learning by subsequent agents. Anticipating this behavior from subse-
quent agents, early agents with a negative signal do not support the proposal if
an UP cascade has not started yet. This makes the support of the agents with
a positive signal informative for the subsequent agents. For the histories that
either the AoN target or a cascade has been reached, the proof is trivial.

LEMMA A.1: Suppose k̄(p) ≥ −1. Then, in every equilibrium, when it is still
possible to reach the AoN target T, the following relation holds for every 2 ≤ i ≤
N:

E[V |Hi−1] ≤ Vk̄(p)+1. (A.8)

In other words, there is an upper bound on the expected value of the project as
a function of p.

PROOF: Suppose the contrary. Then, there exists an agent i with E[V |Hi] =
Vk̄(p)+2 and E[V |Hi−1] = Vk̄(p)+1. However, given E[V |Hi−1] = Vk̄(p)+1, i would ac-
cept the proposal regardless of her private signal because

E[V |xi,Hi−1, AN ≥ T] ≥ E[V |xi,Hi−1] ≥ E[V |xi = −1,Hi−1] = Vk̄(p) ≥ p. (A.9)

Recall that all expectations are conditional on equilibrium strategies of other
agents, and AN is the total number of supporters among all agents. The first
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606 The Journal of Finance®

inequality (from left) in (A.9) follows from the fact that the gatekeeper makes
her decision based on an information set that fully nests Hi−1. Therefore, her
support positively updates agent i’s belief.

Equation (A.9) shows that agent i’s action is not informative for subsequent
agents. Thus, E[V |Hi] = E[V |Hi−1] = Vk̄(p)+1, a contradiction. �

We are now ready to prove the equilibrium characterization. For notational
ease, we replace k̄(p) by k̄. We proceed by examining the optimal strategy for
different histories.

Ai−1 < T − 1 and ki−1 ≤ k̄.
According to (2), the agent chooses to support if and only if E[V |xi,Hi−1, AN ≥

T] ≥ p. We examine two cases xi = 1 and xi = −1 separately.

(i) xi = 1: If agent i chooses to reject, she receives zero. If agent i supports,
then consider a history HN � Hi = (Hi−1, 1) in which the proposal is ac-
cepted. Denote the gatekeeper by g, that is, g is the smallest integer
such that Ag = T . Note that g is a random variable depending on the
history H. Since the subsequent agents {i + 1, i + 2 . . .} perfectly infer
xi = 1 from the support of agent i, agent g’s information set fully nests
that of agent i. We therefore get

E[V |xi,Hi−1, AN ≥ T] = E[V |xi,Hi−1, E[V |xg,Hg−1] ≥ p]

= E[V |E[V |xg,Hg−1] ≥ p]

≥ p.

In other words, as long as it is possible to implement the project, it is
optimal for agent i to support.

(ii) xi = −1: In this case, in equilibrium agent i’s support would be mis-
interpreted by subsequent agents as a positive signal, that is, k(Hi) =
k(Hi−1) + 1, while the correct posterior should be k(Hi) = k(Hi−1) − 1 =
k(Hi−1) + 1 − 2. Moreover, if the proposal is accepted, Lemma A.1 im-
plies E[V |xg,Hg−1] ∈ {Vk̄,Vk̄+1}. Therefore, agent i, knowing that her sig-
nal is incorrectly inferred by her action, assigns an expected value
bounded above by Vk̄−1 < p conditional on her signal and project im-
plementation. She thus optimally chooses ai = −1, lest she receives a
negative expected payoff.

In sum, when ki−1 ≤ k̄ and Ai−1 < T − 1, agent i follows her private signal
and the subsequent agents update their beliefs accordingly.

Ai−1 ≥ T − 1 and ki−1 ≤ k̄.
In this case, the project is implemented once agent i supports, and agent i’s

problem is the same as in standard cascade models. Taking that into account,
agent i supports the project if and only if E[V |xi,Hi−1] = Vki−1+xi ≥ p. The only
time the strategy is separating is when ki−1 ∈ {k̄, k̄ − 1}. Given this observa-
tion, it is easy to check that the strategies specified in (A.6) are optimal in
this case.
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Information Cascades and Threshold Implementation 607

ki−1 > k̄.
Clearly, E[V |xi,Hi−1] ≥ Vk̄ ≥ p. In other words, agent i gains at least Vk̄ − p

in expectation if the AoN target is reached. It is therefore not profitable to
reject regardless of agent i’s type, which proves optimality in this case.

Finally, we show that the equilibrium strategy profile is the unique informer
equilibrium. Our first step is to show that in an informer equilibrium, all
strategies are separating before reaching a cascade and the AoN threshold
is possible to reach. To do so, we show that there are no partially sepa-
rating strategies because of the tie-breaking rule in Assumption 1. When
N − (i + 1) < T − Ai − 1, it is impossible to reach the AoN target, and As-
sumption 1 suggests a fully separating strategy. We now consider scenarios in
which it is still possible to reach the AoN target (i.e., N − (i + 1) ≥ T − Ai − 1).
Because there is not a cascade yet, Agent i’s payoff satisfies E(V |Hi−1, xi =
1, ai = 1, AN ≥ T ) ≥ p > E(V |Hi−1, xi = −1, ai = 1, AN ≥ T ), and hence agent i
has no incentive to play a partial pooling strategy.

Therefore, an informer equilibrium must be an equilibrium such that all
strategies are fully separating before reaching a cascade and the AoN thresh-
old is possible to reach. To show uniqueness, we need only to show that a
cascade cannot occur when Ai−1 < T − 1 and ki−1 ≤ k̄ (and the AoN thresh-
old is possible to reach).19 Suppose to the contrary that such a cascade exists
in an equilibrium. Then, agents should choose the same action after such a
history. First, it is not possible that all agents support if doing so leads to
project implementation, because the gatekeeper would certainly reject if she
has a negative signal, this would contradict the assumption that the gate-
keeper is part of the cascade. Second, it is not possible that all agents reject be-
cause this would lead to the eventual rejection of the proposal. In this case, all
agents are indifferent between supporting and not supporting, and their rejec-
tions violate Assumption 1. The contradiction implies that the equilibrium is
unique.

The characterization of UP cascades and DOWN cascades follows
directly. �

C. Proof of Proposition 2

PROOF: Without loss of generality, we focus on cases in which ν ≤ VN . We
prove the proposition via multiple steps and lemmas. In Step 1, we show that
the optimal price p∗ must be in the set {V−1,V0, . . . ,VN}. The optimal pair
(p∗, T∗) therefore belongs to set {(p, T )|p ∈ {V−1, . . . ,VN}, T ∈ {1, . . . , N}} with
finite number of elements, which ensures the existence of a solution to the
proposer’s optimization problem. In Steps 2 to 6, we show that T∗ is the opti-
mal AoN threshold because it is a dominant choice. We discuss all T > T∗ and
T < T∗, in Steps 2 and 3, respectively, when k∗ > 0. For k∗ = 0, we prove the

19 When Ai−1 ≥ T − 1, the subsequent actions are irrelevant for agent i’s payoff, and her action
depends only on the price and the expected value given xi and Hi−1. Therefore, the optimal strategy
is the same across all equilibria (subject to Assumption 1).
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608 The Journal of Finance®

optimality of T∗ for q(1 − q) > 1
6 and q(1 − q) ≤ 1

6 , in Steps 4 and 5, respec-
tively. In Step 6, we finish the proof by showing that T∗ is optimal when
k∗ = −1.

Step 1: Optimality of p∗ and Existence of the Solution

First, it is straightforward to see that p ≥ ν, because any equilibrium price
p < ν would generate a negative return for the proposer and is strictly domi-
nated by p = ν. We next show that p∗ ∈ {V−1,V0, . . . ,VN}. Note that all p < V−1
are suboptimal since an UP cascade starts from the very first agent and all
agents would support if p ≤ V−1. Moreover, clearly, the posterior of the agents
never exceeds VN , and thus all p > VN are suboptimal as well. We therefore
focus on the case p ∈ [V−1,VN].

For any p ∈ (Vk−1,Vk], k ∈ {0, 1, . . . , N}, in the subgame, agents follow the
equilibrium strategy profile specified in (A.6), as it depends only on k̄(p) and
T . This implies that any choice of p ∈ (Vk−1,Vk) induces the same k̄(p) and is
dominated by p = Vk, for k ∈ {0, 1 . . . N} . Consequently, p∗ ∈ {V−1,V0, . . . ,VN}.
Notice that the set of T∗ is also finite as T ∈ {1, 2, . . . , N}. The proposer then
need only to choose from a finite set of pairs (p, T ), which guarantees the exis-
tence of the solution.

Notice that we cannot rule out multiple equilibria because it is possible to
have multiple p∗ (and corresponding Vk∗ ) that generate the same expected
proceeds.

Some Helpful Definitions and Results
For the rest of the proof, given the equilibrium price Vk∗ , we say that a se-

quence of signals x ∈ X is “T-supported” for some 1 ≤ T ≤ N if the proposal
is accepted for pair (Vk∗, T ). Let X̃T−1/T be the set of all sequences of signals
that are (T − 1)-supported, but not T-supported, and let X̃T/T−1 be the set of
sequences of signals that are T-supported, but not (T − 1)-supported (we pro-
vide an example of such sequences in the proof below). Recall that the optimal
pair is (p∗, T∗), where p∗ = Vk∗ and T∗ = �N+k∗

2 
. The following two lemmas are
useful for our analysis.

LEMMA A.2: Suppose sequence x ∈ X is (T − 1)-supported and not T-supported,
for some T ≤ T∗. Then, there are at least T − 1 positive signals in x. Further-
more, if hT−1 is the agent with the (T − 1)th positive signal in the queue, then
hT−1 ≤ N − 2 and (xhT−1 , xhT−1+1, xhT−1+2) = (1,−1,−1).

PROOF: First, we show that if a sequence x′ ∈ X induces an UP cascade, then
more than T∗ agents support the proposal. To see this, suppose an UP cascade
starts after Agent r < N, which implies

∑r
i=1 xi = k∗ + 1. One can then obtain

that among those r agents, there are r+k∗+1
2 supporting agents. Therefore, since

all the subsequent agents support the proposal, the total number of supporters
is

r + k∗ + 1
2

+ N − r >
N + k∗ + 1

2
> T∗.
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Information Cascades and Threshold Implementation 609

Given this result, since x is not T-supported, the AoN target T − 1 cannot be
reached by an UP cascade, and the existence of at least T − 1 positive signals
is necessary.

To see hT−1 ≤ N − 2, note that when the AoN target is T − 1 and x is T − 1-
supported, the support of hT−1 requires that the following condition hold:

T − 1 − (hT−1 − (T − 1)) ≥ k∗ ⇒ hT−1 ≤ 2(T∗ − 1) − k∗

≤ 2
⌊

N + k∗

2

⌋
− 2 − k∗ ≤ N − 2.

The only claim left to show is that (xhT−1 , xhT−1+1, xhT−1+2) = (1,−1,−1). This
relation results from the assumption that x is not T-supported. It therefore
implies that both

∑hT−1+1
i=1 xi and

∑hT−1+2
i=1 xi should be strictly less than k∗. The

result is straightforward from the observation that
∑hT−1

i=1 xi = k∗. �

LEMMA A.3: Suppose sequence x ∈ X is (T − 1)-supported, for some T ≤ T∗.
Then there exists an injective function x′(x) that maps each sequence x to a
distinct sequence x′(x) such that x′(x) is T-supported. The number of supporting
agents in x′(x) for T is weakly higher than that in x for T − 1.

PROOF: The proof of Lemma A.2 shows that if a sequence is both (T − 1)-
supported and T-supported, then reconsider x′(x) = x and the number of sup-
porting agents in both cases is the same. It remains to prove the lemma for any
signal that is (T − 1)-supported but not T-supported. From Lemma A.2, every
sequence of signals x ∈ X̃T−1/T can be rewritten as x = ( . . .︸︷︷︸

hT−1−1

, 1,−1,−1, . . .).

There exists a corresponding sequence x′ = ( . . .︸︷︷︸
hT−1−1

,−1, 1, 1, . . .) ∈ X̃T/T−1, in

which only the three middle signals are reversed. Based on results in Proposi-
tion 1, there are exactly T − 1 supporters in x (since a DOWN cascade starts at
agent hT−1 + 2), while there are at least T supporters in x′(x). By construction,
each x has a distinct image x′(x), so x′(x) is an injective function. �

The next couple of steps show that the optimal AoN threshold is T∗ = �N+k∗
2 
,

given p∗ = Vk∗ .

Step 2: The Proof of π (p∗, T ) < π (p∗, T∗), for T > T∗ and k∗ > 0

We simply show that for any T > T∗, if a sequence of signals is T-supported,
then it is T∗-supported and has at least the same number of supporters as well.
We next show that there exists at least one sequence that is T∗-supported but
not T-supported.

To prove the first claim, suppose x ∈ X is a T-supported sequence for some
T > T∗. Denote by s j the agent that makes the j’th support (recall that in
Lemma A.2 hT−1 is the agent that has the (T − 1)th positive signal; here s j
is not necessarily the agent observing the jth positive signal). There are two
possibilities. If sT∗ is part of an UP cascade, that is, if she supports regardless
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610 The Journal of Finance®

of her private signals, then the formation of the UP cascade is not affected by
reducing the AoN target to T∗. Therefore, x is also T∗-supported.

If sT∗ is not part of an UP cascade, then all of the first T∗ supporters have
a positive private signal. If the AoN target is reduced to T∗, it does not affect
the decision of all agents i ≤ sT∗−1. Agent sT∗ , as the gatekeeper, supports only
if the number of positive signals exceeds the number of negative signals by at
least k∗, that is,

∑sT∗
i=1 xi ≥ k∗. This is the case because

sT∗∑
i=1

xi = T∗ + (T∗ − sT∗ ) = 2T∗ − sT∗ ≥ 2T∗ − N + (T − T∗) ≥ 2T∗ − N + 1 ≥ k∗.

The first inequality comes from the fact that sT∗ + (T − T∗) ≤ sT ≤ N. There-
fore, x is T∗-supported too. Moreover, notice that if sT∗ + (T − T∗) = sT , then
agent sT∗+1 must observe a positive signal and support, starting an UP cas-
cade conditional on T∗. If sT∗ + (T − T∗) < sT , we have

sT∗∑
i=1

xi = T∗ + (T∗ − sT∗ ) = 2T∗ − sT∗ ≥ 2T∗ − N + (T − T∗) + 1 ≥ 2T∗ − N

+ 2 ≥ k∗ + 1.

Again, we then have that sT∗ is part of an UP cascade for T∗.
In the last step, it is easy to check that the following sequence is T∗-

supported and not T-supported for any T > T∗: (−1, . . . ,−1︸ ︷︷ ︸
N−k∗

2

, 1, . . . , 1︸ ︷︷ ︸
N+k∗

2

) when

N + k∗ is even, and (−1, . . . ,−1︸ ︷︷ ︸
N−k∗−1

2

, 1, . . . , 1︸ ︷︷ ︸
N+k∗−1

2

,−1) when N + k∗ is odd.

Step 3: The Proof of π (p∗, T ) < π (p∗, T∗), for T < T∗ and k∗ > 0

Notice that given Proposition 1 and k∗ > 0, if T < k∗ then the project will
not be implemented for sure. Thus, we only consider the case in which k∗ ≤
T . We first show that given the price p∗, the probability of reaching the AoN
target (Pr(AN ≥ T |p∗, T )) strictly increases with T for k∗ ≤ T ≤ T∗. We then
show that the expected number of supporters conditional on reaching the AoN
target (E[AN|AN ≥ T, T]) is also increasing in T . These two results are enough
to conclude that the proposer’s expected profit is increasing in T for k∗ ≤ T ≤
T∗.

First, we show that Pr(AN ≥ T |p∗, T ) ≥ Pr(AN ≥ T − 1|p∗, T − 1), for T ≤
T∗. Recall that X̃T−1/T is the set of all sequences of signals that are (T − 1)-
supported but not T-supported, and X̃T/T−1 is the set of sequences of sig-
nals that are T-supported but not (T − 1)-supported. We then need only to
show that Pr(X̃T/T−1) ≥ Pr(X̃T−1/T ). We first prove a useful lemma here. Let
ϕk+1,i denote the probability that an UP cascade starts after agent i. Before
reaching the threshold, because agents are truth telling before an UP cascade
starts, the arrival of an UP cascade is equivalent to the first passage time of a
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Information Cascades and Threshold Implementation 611

one-dimensional biased random walk. Using results on hitting times from
Van der Hofstad and Keane (2008), we can then compute ϕk+1,i.

LEMMA A.4: Suppose k̄(p) = k (recall that k̄(p) is defined just before Proposi-
tion 1). We then have:

(a) The probability that an UP cascade starts after agent i is

ϕk+1,i = k + 1
i

(
i

i+k+1
2

)
[q(1 − q)]

i−k−1
2

(1 − q)k+1 + qk+1

2
, (A.10)

where (
i

i+ j
2

)
=
{

i!
i+ j
2 ! i− j

2 !
if i ≥ j and j + i even,

0 otherwise.
(A.11)

(b) For a given price and threshold pair (p, T ), the probability of reaching the
threshold at agent i without a prior UP cascade is qk+(1−q)k

qk+1+(1−q)k+1 ϕk+1,i+1.

PROOF: First, we restate a standard result of the hitting-time theorem
(Van der Hofstad and Keane (2008)).

LEMMA A.5 (Hitting Time Theorem): Fix n ≥ 1. Let {Yi}∞i=1 be a sequence of in-
dependently and identically distributed random variables Yi taking values in
{· · · ,−2,−1, 0, 1}. Define Sn =∑n

i=0 Yi, where Y0 = 0. Define the stopping (hit-
ting) time τk = inf{m ≥ 0 : Sm = k}. Then,

Pr(τk = n) = k
n

Pr(Sn = k). (A.12)

We are now ready to prove Lemma A.4.
Part (a). Note that an UP cascade starts after agent i if and only if τk+1 = i,

once we replace Yi in Lemma A.5 with Xi in our setting. Moreover, we can
directly derive Pr(Si = k + 1|V ∈ {0, 1}) by combinatorial calculation as

Pr(τk+1 = i|V = 1) = k + 1
i

Pr(Si = k + 1|V = 1) = k + 1
i

(
i

i+k+1
2

)
q

i+k+1
2 (1 − q)

i−k−1
2 ,

and

Pr(τk+1 = i|V = 0) = k + 1
i

Pr(Si = k + 1|V = 0) = k + 1
i

(
i

i+k+1
2

)
(1 − q)

i+k+1
2 q

i−k−1
2 .

Moreover, note that

ϕk+1,i = Pr(τk+1 = i) =
∑

j∈{0,1}
Pr(V = j) Pr(τk+1 = i|V = j).
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612 The Journal of Finance®

The proof concludes with simple algebra.
Part (b). Denote

A = {Hi : Reaching the threshold at i without prior UP cascade}.

Obviously, k(Hi) = k̄(p). Thus, if xi+1 = 1, then we have an UP cascade starting
at i + 1, or τk+1 = i + 1. We therefore have

Pr(A|V = j) = Pr(τk+1 = i + 1|V = j)
Pr(xi+1 = 1|V = j)

for j ∈ {0, 1}. This further implies

Pr(A) =
∑

j∈{0,1}
Pr(V = j) Pr(A|V = j)

=
∑

j∈{0,1}
Pr(V = j)

Pr(τk+1 = i + 1|V = j)
Pr(xi+1 = 1|V = j)

.

Plugging in the expressions for both Pr(τk+1 = i + 1|V = j) (see the proof of
Part (a) above) and Pr(xi+1 = 1|V = j) concludes the proof. �

Returning to the main proof for Step 3. Following the proof of Lemma A.3,
for every sequence of signals x = ( . . .︸︷︷︸

hT−1−1

, 1,−1,−1, . . .) ∈ X̃T−1/T , there exists a

corresponding sequence x′(x) = ( . . .︸︷︷︸
hT−1−1

,−1, 1, 1, . . .) ∈ X̃T/T−1 in which only the

three middle signals are reversed. The function x′(x) is an injective function,
and thus,

Pr(X̃T/T−1) = 1
2
[
Pr(X̃T/T−1|V = 1) + Pr(X̃T/T−1|V = 0)

]
≥ 1

2

[
q

1 − q
Pr(X̃T−1/T |V = 1) + 1 − q

q
Pr(X̃T−1/T |V = 0)

]
⇒ Pr(X̃T/T−1) − Pr(X̃T−1/T ) ≥

2q − 1
2

[
1

1 − q
Pr(X̃T−1/T |V = 1) − 1

q
Pr(X̃T−1/T |V = 0)

]
.

The first inequality comes from the fact that x′(x) is an injection but not neces-
sarily a bijection. Consequently, we need only to show

Pr(X̃T−1/T |V = 1)

Pr(X̃T−1/T |V = 0)
≥ 1 − q

q
.
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Information Cascades and Threshold Implementation 613

To see this, note that

E
[
V |x ∈ X̃T−1/T

] = Vk∗−2

⇒ Pr(X̃T−1/T |V = 1)

Pr(X̃T−1/T |V = 0)
= Vk∗−2

1 − Vk∗−2
≥ V−1

1 − V−1
= 1 − q

q
,

where the first equality comes from the fact that all sequences in X̃T−1/T are of
the form ( . . .︸︷︷︸

hT−1−1

, 1,−1,−1, . . .) (see the proof of Lemma A.3). We therefore have

Pr(X̃T/T−1) ≥ Pr(X̃T−1/T ) for T ≤ T∗ and k∗ > 0.
We next discuss the number of supporters conditional on reaching the

AoN target. Based on the proof of Lemma A.3, we know that for each x ∈ X
that is (T − 1)-supported, there exists a distinct sequence x′ ∈ X that is T-
supported and has at least the same number of supporting agents. More-
over, for x ∈ X̃T−1/T , the corresponding x′(x) has a strictly higher number of
supporters.

As a result, the probability of reaching the AoN target is greater for T
than T − 1, and the expected number of supporters conditional on reaching
the target is strictly greater for T than T − 1. Therefore, for any ν < VN ,
π (p∗, T ) > π (p∗, T − 1) for k∗ ≤ T ≤ T∗. By combining the results of Steps 2
and 3, we conclude that when the equilibrium price p∗ = Vk∗ satisfies k∗ > 0,
π (p∗, T∗) > π (p∗, T ) for any T 	= T∗, so the optimal AoN target is T� = �N+k�

2 

when k∗ > 0.

Step 4: Optimality of T∗ when k∗ = 0, q(1 − q) > 1
6

For k∗ = 0 (p∗ = 1
2 ), the proof of Step 2 also applies here, so π ( 1

2 , T ) <

π ( 1
2 , T∗), for T > T∗. Therefore, we need only to show π ( 1

2 , T ) < π ( 1
2 , T∗) for

T < T∗. To be more specific, we show that any strategy (p = 1
2 , T − 1), 2 ≤ T ≤

T∗, is dominated by ( 1
2 , T ) (notice that T∗ = 1 is effectively a no-AoN target).

Given p = 1
2 , for any signal sequence x that has agent 2T as part of an UP

cascade, the first 2T agents must observe at least T + 1 positive signals, the
signal sequence is both (T − 1)-supported and T-supported, and the number of
supporters is the same for T − 1 and T . So the proposer is indifferent between
( 1

2 , T − 1) and ( 1
2 , T ) when agent 2T is part of an UP cascade.

Define Qm = {x|∑ j
i=1 xi ≤ 0,∀ j ≤ m,

∑m
i=1 xi = 0}. For any x ∈ Qm, agent m is

not part of an UP cascade. Then, the sets X̃T−1/T and X̃T/T−1 can be character-
ized as

X̃T−1/T = {x|x ∈ Q2T−2, x2T−1 = x2T = −1},

X̃T/T−1 = Q2T/{x|x ∈ Q2T−2, x2T−1 = −1, x2T = 1}.

Notice that there is no need here to consider x2T−1 = 1, x2T = −1 because this
would create an UP cascade. The first result follows directly from the proof of
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614 The Journal of Finance®

Lemma A.3, which suggests why
∑2T−2

i=1 xi = 0 for any x ∈ X̃T−1/T . Lemma A.4
gives the probability of Qm,

Pr(Qm) = 1
2

Pr(Qm|V = 1) + 1
2

Pr(Qm|V = 0)

= 1
2

Pr
(
HU

m+1|V = 1
)

q
+ 1

2
Pr
(
HU

m+1|V = 0
)

1 − q
,

where HU
m is the set of histories that an UP cascade starts after agent m. Let

π (p, T, Z) be the expected revenue on event set Z, given strategy (p, T ). Then,

π ( 1
2 , T, X̃T/T−1)

π ( 1
2 , T − 1, X̃T−1/T )

≥ Pr(X̃T/T−1)

Pr(X̃T−1/T )
T

T − 1

= Pr(Q2T ) − Pr(Q2T−2)q(1 − q)

Pr(Q2T−2) (1−q)2+q2

2

T
T − 1

=
1
2

Pr(HU
2T+1|V=1)

q + 1
2

Pr(HU
2T+1|V=0)
1−q − 1

2
Pr(HU

2T−1|V=1)q(1−q)
q − 1

2
Pr(HU

2T−1|V=0)q(1−q)
1−q

[ 1
2

Pr(HU
2T−1|V=1)q2

1−q + 1
2

Pr(HU
2T−1|V=0)(1−q)2

q ] T−1
T

= 6T
T + 1

q(1 − q)
(1 − q)2 + q2 ≥ 4q(1 − q)

1 − 2q(1 − q)
,

where the first inequality comes from the fact that any x ∈ X̃T−1/T has exactly
T − 1 supporting agents while any x ∈ X̃T/T−1 has at least T supporters, as
we show in Lemma A.3. The last inequality applies the fact that T ≥ 2. When
q(1 − q) > 1

6 , π ( 1
2 , T, X̃T/T−1) > π ( 1

2 , T − 1, X̃T−1/T ) and thus ( 1
2 , T − 1) is domi-

nated by ( 1
2 , T ).

Step 5: Optimality of T∗ when k∗ = 0, q(1 − q) ≤ 1
6

Similar to Step 4, we need only to show that for any 2 ≤ T ≤ T∗, ( 1
2 , T − 1) is

a dominated strategy. To be more specific, we show that ( 1
2 , T − 1) is dominated

by (q, T ). To do so, we decompose all possible implementation histories under
strategy ( 1

2 , T − 1) into several sets and show that, for each set, a correspond-
ing distinct set of implementation histories under strategy (q, T ) is associated
with more profits.

When (1 − q)q ≤ 1
6 , we have q ≥ 1

2 +
√

3
6 > 3

4 . For p∗ = 1
2 and AoN threshold

T − 1, the project would be implemented when there is already an UP cascade
by agent 2T − 2 or when there is no UP cascade by agent 2T − 2 and the 2T −
2th agent is the T − 1th supporting agent. This is because if there is no UP
cascade by agent 2T − 2 and she is not the T − 1th supporting agent, then
there are weakly more than T rejecting agents and weakly less than T − 2
supporting agents among the first 2T − 2 agents, and therefore when we reach
the T − 1th agent with positive signal, it has to be the case that k < 0 at that
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Information Cascades and Threshold Implementation 615

point (and therefore that agent would not support the project). It suffices to
show that in each scenario, the alternative strategy is better for the proposer.

(1) When there is already an UP cascade by agent 2T − 2, let HU
i be the set

of histories that result in an UP cascade starting after agent i ≤ 2T − 2.
Given any Hi ∈ HU

i , E[V |k(Hi)] = q, and denote the number of support-
ers by AN (HU

i ). If xi+1 = 1, then there would be an UP cascade starting
after agent i + 1 for the strategy (p∗ = q, T ), and the number of sup-
porting agents is AN (HU

i ). Let π (p, T | HU
i ) be the expected payoffs for

the proposer conditional on strategy (p, T ) and event HU
i . We have that

(p∗ = q, T ) dominates ( 1
2 , T − 1) conditional on HU

i because

π
(
q, T | HU

i

) ≥ (q − ν)AN
(
HU

i

) [
Pr
(
V = 1|HU

i

)
q + Pr

(
V = 0|HU

i

)
(1 − q)

]
= AN

(
HU

i

)
(q − ν)[(1 − q)2 + q2]

> AN
(
HU

i

)×
(

3
4

− ν

)
× (1 − 2(1 − q)q)

≥ AN
(
HU

i

)×
(

3
4

− ν

)
× 2

3

≥
(

1
2

− ν

)
AN
(
HU

i

)
= π

(
1
2

, T − 1| HU
i

)
.

The second inequality comes from the fact that q(1 − q) ≤ 1
6 .

(2) When there is no UP cascade by agent 2T − 2 but the (2T − 2)th agent
is the (T − 1)th supporting agent, x ∈ Q2T−2. Consider the following two
sets of histories for strategy (q, T ):
(a) QA

2T−1 = {x|x ∈ Q2T−2, x2T−1 = 1}:
Obviously the threshold T is met. Since given any H2T−2 ∈ Q2T−2,
there are an equal number of positive and negative signals by agent
2T − 2, we have

Pr
(
QA

2T−1

)
= Pr(Q2T−2)[Pr(V = 1|Q2T−2)q

+ Pr(V = 0|Q2T−2)(1 − q)] = 1
2

Pr(Q2T−2).

We next discuss the expected number of supporting agents:
For event QA

2T−2 under strategy ( 1
2 , T − 1), the UP cascade starts af-

ter agent 2T − 1 and the number of supporting agents is N − T + 1,
the maximum conditional on Q2T−2. For event QA

2T−1 under strategy
(q, T ), if x2T = 1, the UP cascade starts after agent 2T and the num-
ber of supporting agents is N − T + 1. The associated conditional

 15406261, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13294 by C

ornell U
niversity, W

iley O
nline L

ibrary on [26/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



616 The Journal of Finance®

probability is

Pr
(
x2T = 1|QA

2T−1

)
= q2 + (1 − q)2 ≥ 2

3
>

1
2

.

For event Q2T−2 under strategy ( 1
2 , T − 1),

Pr(x2T−1 = −1|Q2T−2) = 1
2

.

In contrast, for event QA
2T−1, under strategy (q, T ), Pr(x2T =

−1|QA
2T−1) = 2q(1 − q) < 1

2 . For each possible subsequence z =
{x2T , x2T+1, . . . , xN} of sequence x ∈ Q2T−2, and for x2T−1 = −1 , let
AN ( 1

2 , T − 1|Q2T−2, x2T−1 = −1, z) be the associated number of sup-
porting agents under strategy ( 1

2 , T − 1). The corresponding subse-
quence z′ = {x2T , x2T+1, . . . , xN−1} satisfies

AN

(
q, T |QA

2T−1, x2T = −1, z′
)

> AN

(
1
2

, T − 1|Q2T−2, x2T−1 = −1, z
)

.

This inequality holds because in each scenario, just before the cor-
responding subsequence z(z′) starts, the posterior is k̄(p) − 1, the
project would be implemented for sure, and there are T supporters in
QA

2T−1 before z′ but only T − 1 supporting decisions in Q2T−2 before
z. So

E
[
AN (q, T )|QA

2T−1, x2T = −1
]

≥ E

[
AN

(
1
2

, T − 1
)

|Q2T−2, x2T−1 = −1
]

.

Then,

E
[
AN (q, T )|QA

2T−1

]
=
∑
−1,1

Pr(x2T = i|QA
2T−1)E

[
AN (q, T )|QA

2T−1, x2T = i
]

= (q2 + (1 − q)2)(N − T + 1) +
2q(1 − q)E

[
AN (q, T )|QA

2T−1, x2T = −1
]

>
1
2

(N − T + 1) + 1
2

E
[
AN (q, T )|QA

2T−1, x2T = −1
]

>
1
2

(N − T + 1) + 1
2

E

[
AN

(
1
2

, T − 1
)

|Q2T−2, x2T−1 = −1
]

=
∑
−1,1

Pr(x2T−1 = i|Q2T−2)E
[
AN

(
1
2

, T − 1
)

|Q2T−2, x2T−1 = i
]

= E

[
AN

(
1
2

, T − 1
)

|Q2T−2

]
,
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Information Cascades and Threshold Implementation 617

where the first inequality comes from the fact that N − T − 1 is the
maximum number of possible supporters conditional on Q2T−2.

(b) Consider the set QB
2T−1 = {x|∑ j

i=1 xi ≤ 1,∀1 ≤ j ≤ 2T − 1,
∑2T−3

i=1 xi =
1, x2T−2 = −1, x2T−1 = 1}:
The event QB

2T−1 is such that there is no UP cascade (with respect to
p∗ = q) by agent 2T − 2, and k(H2T−3) = 1, x2T−2 = −1, and x2T−1 =
1. Obviously the threshold T is met. Notice that for strategy (q, T ),
histories in this set are distinct from those we discuss above (in case
1 we only cover UP cascades for strategy (q, T )). For any sequence x ∈
QB

2T−1, there is a mapping xA(x) = {x2T−2, x1, x2, . . . , x2T−3, x2T−1, . . . }.
The mapping xA(x) is a bijection that establishes a one-to-one map-
ping between finite sets QB

2T−1 and QA
2T−1. Following the discussion

in part (a), we have Pr(QB
2T−1) = Pr(QA

2T−1) = 1
2 Pr(Q2T−2), and the

expected number of supporters conditional on event QB
2T−1 and strat-

egy (q, T ) is higher than that of event Q2T−2 and strategy ( 1
2 , T − 1).

Since Pr(QB
2T−1) + Pr(QA

2T−1) = Pr(Q2T−2), and in either case there are
more supporting agents who generate higher profit q − ν > 1

2 − ν, So
(p∗ = q, T ) dominates ( 1

2 , T − 1) when there is no cascade and (1 − q)q ≤
1
6 .

Step 6: Optimality of T∗ when k∗ = −1

Note that for k∗ = −1 (p∗ = 1 − q), an UP cascade is reached from the first
agent. Therefore, regardless of the choice of T , all agents support the proposal.
Therefore, T = T∗ is an optimal choice.

In conclusion, Steps 2 to 6 show that T∗ is the proposer’s weakly dominant
strategy, and it is a strictly dominant strategy when T different choices may
lead to different equilibrium expected proceeds. �

D. Proof of Corollary 1

PROOF: Recall that s j is the jth supporting agent. We show that there is no
DOWN cascade unless the following holds simultaneously:

(1) N + k∗ is odd.
(2) There is no UP cascade.
(3) N − 3 ≤ sT∗−1 ≤ N − 1.
(4) xj = −1, ∀ sT∗−1 < j ≤ N − 1.

First, if there is an UP cascade, then there would be no DOWN cascade. Sec-
ond, if there are fewer than T∗ − 1 supporting agents, then from Proposition 1
there would be no DOWN cascade.

The only remaining case is when there is no UP cascade by agent sT∗−1. Since
there is no UP cascade yet, then by the construction of T∗ = �N+k∗

2 
, sT∗−1 ≥
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618 The Journal of Finance®

2(T∗ − 1) − k∗ ≥ N − 3 (as otherwise there would be strictly fewer than T∗ −
1 − k∗ rejecting agents when we reach sT∗−1). To be more specific:

(1) If N + k∗ is even, then sT∗−1 ≥ N − 2. When sT∗−1 = N, then from Propo-
sition 1 there would be no DOWN cascade. When sT∗−1 ∈ {N − 2, N − 1},
ksT∗−1 = k∗ + N − 2 − sT∗−1 and there would be no DOWN cascade (a
DOWN cascade starts after k = k∗ − 2).

(2) If N + k∗ is odd, then sT∗−1 ≥ N − 3. When sT∗−1 = N, then from Propo-
sition 1 there would be no DOWN cascade. When sT∗−1 ∈ {N − 3, N −
2, N − 1}, ksT∗−1 = k∗ + N − 3 − sT∗−1 and there exists a DOWN cas-
cade after agent N − 1 if all agents sT∗−1 < j ≤ N − 1 observe negative
signals.

�

E. Proof of Proposition 3

PROOF: When the price is p = V−1 = 1 − q, the proposer’s expected profit is
(1 − q − ν)N. When the price is p = Vk, k ∈ {0, 1, . . . , N}, based on Lemma A.4,
the proposer’s expected profit given the corresponding optimal AoN target
T (N, k) = �N+k

2 
 is

π

(
Vk,

⌊
N + k

2

⌋)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Vk − ν)

[
N∑
i

ϕk+1,i(N − i−k−1
2 ) + (1−q)kq+(1−q)qk

(1−q)k+1+qk+1 ϕk+1,N
N+k−1

2

]
if k + N odd,

(Vk − ν)

[
N−1∑

i

ϕk+1,i(N − i−k−1
2 ) + (1−q)k+1+qk+1

(1−q)k+2+qk+2 ϕk+1,N+1
N+k

2

]
if k + N even.

(A.13)

We start by proving the following lemma.

LEMMA A.6: Let k̄(ν) ∈ {0, 1, 2, . . .} be the smallest integer satisfying Vk̄(ν) ≥ ν.
For each k ∈ {k̄(ν), k̄(ν) + 1, k̄(ν) + 2, . . .}, there exists a finite positive integer
N(k) such that for ∀ N ≥ N(k), π (Vk, �N+k

2 
) > π (Vk−1, �N+k−1
2 
), where the ar-

guments in π are the price and AoN threshold, respectively.

PROOF: To show the existence of N(k), we first prove the existence of N(0). We
then proceed to the k ≥ 1 case. From the standard Gambler’s Ruin problem,
we know that as N → ∞, for a given Vk, the conditional probability that an
UP cascade occurs at a finite time is one if V = 1 and (1−q)k+1

qk+1 if V = 0 (Feller
(1968), p. 347, equation (2.8)).

Note that the total profit when p = V−1 is (1 − q − ν)N. Furthermore, for
p = V0 = 1

2 , an UP cascade starts if
∑i

j=1 xj = 1 for some 1 ≤ j < 2T , where
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Information Cascades and Threshold Implementation 619

T = �N
2 
. Because (1 − q)q < 1

4 , we have

lim
N→∞

π (V0, �N
2 
)

N
= (V0 − ν)

(
Pr(V = 1) + Pr(V = 0)

1 − q
q

)

=
(

1
2

− ν

)(
1
2

+ 1 − q
2q

)
>

(
1
2

− ν

)
2(1 − q)

>1 − q − ν = V−1 − ν.

Since ϕ1,i is strictly positive, there exists a strictly positive integer N1(0) such
that

(V0 − ν)
N1(0)∑
i=1

ϕ1,i > 1 − q − ν.

Let D0 = (V0 − ν)
∑N1(0)

i=1 ϕ1,i − (1 − q − ν) > 0, Q0 = (V0 − ν)
∑N1(0)

i=1 ϕ1,i
i−1

2 , and
let N(0) be the smallest integer such that N(0) > max{N1(0), Q0

D0
}. Then for any

N ≥ N(0),

π (V0, �N
2


) ≥ (V0 − ν)
N(0)∑
i=1

ϕ1,i(N − i − 1
2

) ≥ N(V0 − ν)
N1(0)∑
i=1

ϕ1,i − Q0

>
Q0

D0
D0 + (1 − q − ν)N − Q0 = (1 − q − ν)N.

Next, we prove the existence of N(k) for k > 0. For each k ≥ 1, and the time i
UP cascade arrival rate ϕk+1,i+1, there exists a corresponding ϕk,i for price Vk−1,
and we have

(Vk − ν)ϕk+1,i+1

(Vk−1 − ν)ϕk,i
≥ Vkϕk+1,i+1

Vk−1ϕk,i

=
Vk

k+1
i+1

(i+1)!
i+k+2

2 ! i−k
2 !

[(1 − q)q]
i−k

2
(1−q)k+1+qk+1

2

Vk−1
k
i

i!
i+k

2 ! i−k
2 !

[(1 − q)q]
i−k

2
(1−q)k+qk

2

= q
k + 1

k
i

i+k
2 + 1

(
1 + [q(1 − q)]k−1(q − (1 − q))2

((1 − q)k + qk)2

)
.

Because limi→∞ q i
i+k

2 +1
= 2q > 1, for each k, the ratio Vkϕk+1,i+1

Vk−1ϕk,i
is monotonically

increasing in i for large enough values of i, and thus, there exists an integer
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620 The Journal of Finance®

N1 that Vkϕk+1,i+1
Vk−1ϕk,i

≥ 1 whenever i ≥ N1. We then have

lim
N→∞

(Vk − ν)
N−1∑
i=1

ϕk+1,i+1 = (Vk − ν)

⎛
⎝1

2
+

(1−q)k+1

qk+1

2

⎞
⎠

= Vk − ν

Vk

1
2

qk

qk + (1 − q)k

(1 − q)k+1 + qk+1

qk+1
= Vk − ν

Vk

1
2q

(1 − q)k+1 + qk+1

(1 − q)k + qk

>
Vk − ν

Vk

1
2q

(1 − q)k + qk

(1 − q)k−1 + qk−1
= Vk − ν

Vk
Vk−1

⎛
⎝1

2
+

(1−q)k

qk

2

⎞
⎠

≥ (Vk−1 − ν)

⎛
⎝1

2
+

(1−q)k

qk

2

⎞
⎠ = lim

N→∞
(Vk−1 − ν)

N∑
i=1

ϕk,i,

where we use the Cauchy–Schwarz inequality to derive (qk+1 + (1 −
q)k+1)(qk−1 + (1 − q)k−1) > (qk + (1 − q)k)2.

Given that limN→∞
∑N

i=1 ϕk+1,i+1 converges to a finite number, there exists
an integer N2 ≥ N1 such that

D ≡ (Vk − ν)
N2−1∑
i=1

ϕk+1,i+1 − (Vk−1 − ν) sup
N≥N2

{
N∑

i=1

ϕk,i + qk−1+(1−q)k−1

(1−q)k+qk ϕk,N+1

}
> 0,

where qk−1+(1−q)k−1

(1−q)k+qk ϕk,N+1 is the probability that there is no UP cascade
and agent N is the T th supporting agent given price Vk−1. Let Q ≡ (Vk −
ν)
∑N2−1

i=1 ϕk+1,i+1
i−k

2 . Then, for each k, let N(k) be the smallest integer that is
larger than max{N2,

Q
D }. Then, for any N ≥ N(k),

π

(
Vk,

⌊
N + k

2

⌋)
− π

(
Vk−1,

⌊
N + k − 1

2

⌋)
> ND − Q > N(k)D − Q ≥ 0.

�

Given Lemma A.6, for ∀N and the corresponding optimal price Vk, one
can construct a finite agent base N ≡ max{N(k̄(ν)), N(k̄(ν) + 1), N(k̄(ν) +
2) . . . N(k + 1)} such that for ∀N ≥ N, we have

π (Vk+1, T (Vk+1))>π (Vk, T (Vk)) > π (Vk−1, T (Vk−1))

>π (Vk−2, T (Vk−2)) > . . . > π (Vk̄(ν), T (Vk̄(ν) )).
(A.14)

That is, for ∀N ≥ N, the optimal price p∗ ≥ Vk+1 > Vk. Moreover, this result
implies that for ∀k ∈ Z, there exists a finite number N such that for ∀N ≥ N,
the optimal price p∗ ≥ Vk. That is, limN→∞ p∗

N = V∞ = 1.
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Information Cascades and Threshold Implementation 621

The results also imply that we can construct a sequence of prices {p(N)}
that bound the optimal price from below for each N. This sequence is weakly
increasing and converges to one. Indeed, in an earlier version of the paper, we
show that the lower bound increases with N following a power law. �

F. Proof of Proposition 4

PROOF: According to Lemma 1, the proposer is never able to cover the cost
when no threshold is set (equivalently, when T = 1). For the second part, it
is sufficient to consider the case p = VN and T = N. With positive probability,
all agents receive a positive signal, in which case all projects with a cost not
exceeding VN are financed. Since agents’ posterior cannot exceed VN after any
history of actions, projects with ν > VN cannot be financed through the thresh-
old implementation. �

G. Proof of Proposition 5

PROOF: From the standard Gambler’s Ruin problem we know that as N → ∞,
for a given Vk, the conditional probability that an UP cascade occurs at a finite
time is one if V = 1 and (1−q)k+1

qk+1 if V = 0 (Feller (1968), p. 347, equation (2.8)).

Given the result that limN→∞ p∗ = 1, the corresponding k̄(p) goes to infinity.
Then,

lim
N→∞

PII = lim
N→∞

Pr(AN ≥ T |V = 0) = lim
N→∞

(
1 − q

q

)k̄(p)+1

= 0. (A.15)

We next prove limN→∞ PI = 0. Suppose that limN→∞ PI ≥ ω and consider a
price p = 1 − ω. Then, the proposer’s expected (average) profit is p(Pr(AN ≥
T (p)|V = 1) + Pr(AN ≥ T (p)|V = 0))E(AN|AN ≥ T (p)). It follows that

lim
N→∞

π (p, T (p), N) = lim
N→∞

p
(
Pr(AN ≥ T (p)|V = 1)

+ Pr(AN ≥ T (p)|V = 0)
)E(AN |AN ≥ T (p))

N

> lim
N→∞

p Pr(AN ≥ T (p)|V = 1)
E(AN |AN ≥ T (p),V = 1)

N

≥ lim
N→∞

p∗(1 − ω)PI )
E(AN |AN ≥ T (p∗),V = 1)

N

= lim
N→∞

π (p∗, T (p∗), N)
N

,

(A.16)

where the first strict inequality comes from the fact that for finite p and associ-
ated k, limN→∞ Pr(AN ≥ T (p)|V = 0) = ( 1−q

q )k̄(p)+1 > 0. However, we previously
proved that the optimal price limN→∞ p∗ = 1, a contradiction. We thus conclude
that limN→∞ PI = 0. �
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622 The Journal of Finance®

H. Proof of Proposition 6

PROOF: To begin, we prove that E[V |AN] is weakly increasing when AN < T .
Here, we use T to denote the AoN threshold, which could be either exogenous
or endogenous.

(1) AN < T − 1: According to (A.6), all agents act based on their private sig-
nals when Ai−1 < T − 1 (and no immediate cascade follows) and ki−1 ≤
k̄(p). Therefore, E[V |AN] is strictly increasing with AN when there is no
UP cascade, and the evaluation is strictly less than Vk̄(p)+1. Moreover, we
know that if an UP cascade starts after some agent i in the queue, then
the total support is at least i+k̄(p)+1

2 + N − i >
N+k̄(p)+1

2 . Therefore, when-
ever there is a UP cascade, there are always more supporting agents
compared to when there is no UP cascade.

(2) AN = T − 1: In this case, with an argument similar to the previous case,
we can show that there are at least T − 1 positive signals if there is no
UP cascade. However, it is possible that a DOWN cascade starts after
the T − 1’th supporter, which implies that the expected value stays at
a value not exceeding Vk̄(p)−2 for the agents in the cascade, including
the last agent. Since k̄(p) − 2 ≥ 2(T − 1) − N, the expected value in this
case is strictly bounded below by Vk̄(p)−2, which implies that the increase
from AN = T − 2 to AN = T − 1 strictly improves the publicly perceived
valuation.

By comparing the posteriors in the cases mentioned above, we can get that
E[V |HN] is weakly increasing in AN . Case 1 also indicates that E[V |HN, AN <

T∗] is strictly increasing in AN . With exogenous AoN, a potential UP cascade
in Case 1 simply means that AN weakly improves the perceived valuation;
for AN ≥ T , the project is implemented and more supporting decisions obvi-
ously weakly increase the posterior valuation. Therefore, the statement that
E[V |HN] is weakly increasing in AN holds generally for threshold T . �

I. Discussion on Option to Wait and Proof of Proposition 7

Model Characterization: To extend our baseline model, consider agent i, who
first arrives in period i, and denote her action in each period t ≥ i by at

i ∈
{−1, 0, 1}, where zero indicates that agent i delays her decision in period t to
the next period which is a feasible action only when i = t or at−1

i = 0, that is,
she has not supported or rejected the project yet. In any period t, after agent
t’s decision, all agents already waiting from earlier periods make decisions one
at a time (ordered by their first arrival time). For ease of exposition, if agent
i chooses not to wait at time t, at

i 	= 0, we write al
i = at

i, ∀ l > t. Assumptions 1
and 2 still apply.
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Information Cascades and Threshold Implementation 623

With the option to wait, for agent i at period t ≥ i, the history can be sum-
marized as

Ht
i =

{(
a1

1, a2
2, a2

1, a3
3, a3

1, a3
2, . . . , at−1

t−2, at
t

)
if i = t(

a1
1, a2

2, a2
1, a3

3, a3
1, a3

2, . . . , at−1
t−2, at

t, at
1, at

2, . . . at
i

)
if i < t,

(A.17)

and At
i can be defined as

At
i =

{∑
1≤ j≤t−1 at−1

j 1at−1
j =1 + at

t1at
t=1 if i = t∑

i+1≤ j≤t−1 at−1
j 1at−1

j =1 +∑1≤ j≤i at
j1at

j=1 + at
t1at

t=1 if i < t.
(A.18)

Proof of Proposition 7: PROOF: For any given pair of (p, T ), there exists an
equilibrium with strategy profile aj

i
∗

and posteriors P(V = 1|Hi
i−1) = Vk∗(Hi

i−1 ),
where

ai
i
∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1{xi=1} if Ai−1
i−1 < T − 1, ki−1 ≤ k̄(p), i < N

1 if ki−1 > k̄(p)
0 if Ai−1

i−1 ≥ T − 1, ki−1 < k̄(p) − 1
1{xi=1} if Ai−1

i−1 ≥ T − 1, ki−1 ∈ {k̄(p), k̄(p) − 1}

(A.19)

and for j > i,

aj
i
∗ =

{
21{kN≥k̄(p)} − 1 if j = N & aN−1

i = 0
ai

i
∗ otherwise,

(A.20)

k∗
i (Hi

i−1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ki−1 + (2ai
i − 1

)
if Ai−1

i−1 < T − 1, ki−1 ≤ k̄(p), i < N
ki−1 if ki−1 > k̄(p)
ki−1 if Ai−1

i−1 ≥ T − 1, ki−1 < k̄(p) − 1
ki−1 + (2ai

i − 1) if Ai−1
i−1 ≥ T − 1, ki−1 ∈ {k̄(p), k̄(p) − 1}.

(A.21)

To see these results, suppose agent i observes xi = 1, and she has no incen-
tive to deviate. If she chooses rejection or waiting, then all subsequent agents
misinterpret her action and update their beliefs as if xi = −1. This would re-
sult in failure for some projects that should be financed if i correctly reveals
her information.

If agent i observes xi = −1, as we discuss in the baseline model, if there is
an UP cascade she chooses to invest. When there is no UP cascade yet, she
has no incentive to invest and waiting is a weakly dominating strategy since
she can always reject later. Thus, her first action of waiting still reveals her
information. �
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624 The Journal of Finance®

J. Proof of Proposition 8

PROOF: When agents have options to wait, investors with negative signals
invest if the project is expected to be implemented. Thus, the proposer is effec-
tively maximizing (p − ν) Pr(AN ≥ T ). Also notice that when N goes to infinity,
the chance that the project will be implemented without an UP cascade goes
to zero. From the proof for Corollary 3, we have for any k

lim
N→∞

(Vk − ν)
N−1∑
i=1

ϕk+1,i+1 ≥ lim
N→∞

(Vk−1 − ν)
N∑

i=1

ϕk,i.

The optimal price p therefore goes to one when N goes to infinity. Because
Pr(xi = 1|V = 1) = q > 1 − q, (Feller, 1968), p. 347, equation (2.8), shows that
the probability that an UP cascade takes place for some finite agent is one
when V = 1 and (1−q)k̄(p)+1

qk̄(p)+1 when V = 0. So all good projects will be implemented
almost surely when N goes to infinity, and bad projects will be abandoned al-
most surely as p goes to one when N goes to infinity. Because agents with
negative signals will wait until an UP cascade and good projects will always
generate a high-enough public valuation for an UP cascade, even agents with
negative signals will invest. The scale of the project is thus efficient as well. �

K. Proof for Lemma 2

PROOF: Any equilibrium involves a subgame-perfect equilibrium following the
proposer’s decision on p and T . We need only to show that any subgame-perfect
equilibrium is either the informative one characterized in Proposition 1 or one
that involves a group of free riders whose actions before a cascade are ignored.

For any agent observing a high signal, it is her dominating strategy to con-
tribute when there is a positive probability of reaching the AoN threshold (and
her action would be irrelevant if the project would not be implemented for
sure). For an agent observing a low signal, if she knows that in equilibrium the
subsequent agents update their beliefs based on her action, then she always
rejects as discussed in the proof for Proposition 1. However, if she knows that
her support for the proposal does not positively update subsequent agents’ pos-
teriors, then for any rational off-equilibrium belief (i.e., if subsequent agents
observe a rejection instead of a supporting action, they do not positively update
their beliefs), supporting becomes a dominant action since it allows her to free
ride on the gatekeeper’s decision. Hence, she would support the proposal.

Having proven that a PBNE is either an informer equilibrium or a free-rider
equilibrium, we next show that if p ∈ {Vk, K = −1, 0, . . . N}, then in any free-
rider subgame-perfect equilibrium, the project would be implemented only if
there is an UP cascade. Suppose agent i is a free rider (given the history Hi−1)
in a free-rider subgame-perfect equilibrium. Then ai = 1. Otherwise, suppose
to the contrary that there exists a free-rider subgame-perfect equilibrium in
which agent i always rejects the project. Then, the project will be implemented
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Information Cascades and Threshold Implementation 625

only when the public posterior is at least p after the T th supporting agent.
However, if agent i’s private signal is xi = 1, then her conditional posterior is
strictly higher than p, suggesting that she has incentive to deviate.

If agent i always supports the project, then she must have no incentive to de-
viate when her private signal is xi = −1. Given xi = −1, if the public posterior
after the T th supporting agent is Vk̄(p)+1, then agent i’s conditional posterior is
Vk̄(p) = p. If the public posterior after the T th supporting agent is Vk̄(p), then
agent i’s conditional posterior is Vk̄(p)−1 < p. For agent i, the following inequal-
ity must hold for her individual rationality of investing,

ϕ(Vk̄(p) − p) + Q(Vk̄(p)−1 − p) = Q(Vk̄(p)−1 − p) ≥ 0, (A.22)

where ϕ is the probability that the public posterior after the T th supporting
agent is Vk̄(p)+1 and Q is the probability that the public posterior after the
T th supporting agent is Vk̄(p) = p, conditional on the history Hi−1 and agent
i’s private observation xi = −1. In other words, conditional on xi = −1, agent i
breaks even when the public posterior after the T th supporting agent is Vk̄(p)+1
and loses money when the public posterior after the T th supporting agent is
Vk̄(p). For the agent to be rationally free riding by always supporting, it must
be the case that Q = 0, that is, the project is implemented with an UP cascade.

We next show that for every investor, the informer subgame-perfect equi-
librium weakly Pareto-dominates all free-rider subgame equilibria. In a free-
rider subgame-perfect equilibrium, for each realization path x ∈ X that results
in project implementation, let hT be the T th supporting agent. Consider a cor-
responding x′(x): If there exists a sequence of free riders { j1, j2, . . .}, then move
the sequence of signals {xj1 , xj2 , . . .} to the right of signal xhT . For each free-rider
subgame-perfect equilibrium, x′(x) is an injective function that maps each se-
quence x to a distinct sequence x′(x) such that x′(x) is a realization path that
results in an UP cascade (and thus project implementation) in the informer
subgame-perfect equilibrium. Now consider agent i in the free-rider subgame-
perfect equilibrium. If she observes xi = −1, she breaks even if she is a free
rider, and she also receives zero when she is either an informer or in an UP
cascade. Next suppose that agent i observes xi = 1. For each realization path x
that results in the project implementation, she always chooses the same action
and receives the same payoff on the corresponding realization path x′(x) in the
informer subgame-perfect equilibrium. Since x and x′(x) are equally likely to
happen, Agent i is weakly better off in the informer subgame-perfect equilib-
rium.

Finally, suppose a free-rider subgame-perfect equilibrium involves at least
two free riders. Then, with positive probability there exists a sequence x with
at least two free riders all observing positive private signals and the project is
implemented. Similar to the discussion above, on the realization path x, just af-
ter the (T − 1)th supporting agent the public posterior is Vk̄(p). Notice that the
(T − 1)th supporting agent must be the (N − 1)th agent, as otherwise Q > 0.
In the free-rider subgame-perfect equilibrium, consider the following realiza-
tion path x̂(x): the first N − 1 signals are the same as those in sequence x,

 15406261, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13294 by C

ornell U
niversity, W

iley O
nline L

ibrary on [26/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



626 The Journal of Finance®

while xN = −1. Given the sequence x̂(x), the project would not be implemented
in the free-rider subgame-perfect equilibrium, but would be implemented in
the informer subgame-perfect equilibrium. Moreover, given at least two more
positive signals, all investing agents receive positive expected profit on the se-
quence x̂(x). Therefore, this free-rider equilibrium is strictly dominated by the
informer equilibrium. The proposition follows. �

L. Proof for Proposition 9

PROOF: Clearly, for equilibria with only one free rider, one can simply view
the case as that of an informer equilibrium with N − 1 agents. As N → ∞, the
resulting equilibria converge. Therefore, we need only to focus on free-rider
equilibria with at least two free riders.

As discussed in the proof of Lemma 2, in particular equation (A.22),
the unique equilibrium is an informer equilibrium when p ∈ {Vk, k =
−1, 0, . . . N}. The proposer’s per-investor profit 1

N π (p, T ) should be at least
1
N π (p∗(N), T∗(N)), which is the profit when the proposer optimizes over p ∈
Z+ ∪ {−1}.

Proposition 5 for {(p∗(N), T∗(N)}∞N=1 implies that with any optimal path of
{(p(N), T (N)}∞N=1, project implementation efficiency is achieved and the pro-
poser extracts all of the surplus as N goes to infinity. This condition requires
pN → 1 and that both error probabilities go to zero, as shown in Proposition 5.

Next, let the number of informers in a subgame-perfect equilibrium E be
ZE

N (p(N), T (N)) when the proposer’s endogenous design is (p(N), T (N)). Then,
for any positive integer l, limN→∞ Pr(ZE

N (p(N), T (N)) < l) → 0.
To see this, we again need only to consider free-rider equilibria with

at least two free riders. For a given N, the corresponding proposal
(p(N), T (N)), subgame-perfect equilibrium E, and sequence of signals x de-
fine ZE

N (x; (p(N), T (N))) as the total number of informers for sequence x ∈ X .
Hence, we need to show Pr(ZE

N (x; (p(N), T (N)) < l) → 0, where the probability
is taken over x ∈ X .

Consider the contrary, and suppose for some ε > 0, Pr(ZE (x; (p(N), T (N))) <

l) > ε for infinite values of N. For such an N, we have

πE (p(N), T (N))
N

<
1

2Np(N)
πE

1 (p(N), T (N))

<
1

2Np(N)
(1 − ε(1 − q)l )Np(N)(1 − ν) = 1 − ε(1 − q)l

2
(1 − ν),

where πE
1 (p(N), T (N)) denotes the proposer’s profit when the project is good.

The first inequality holds because an agent should assign probability of at
least p(N) on the project being good to be willing to pay p(N). Since this
holds for all agents and after all the histories, the proposer’s gross rev-
enue when V = 0 cannot exceed 1−p(N)

p(N) times that when V = 1. Therefore,
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Information Cascades and Threshold Implementation 627

1−p(N)
2Np(N) (π

E
1 (p(N), T (N)) + ν) ≥ 1

2N (πE
0 (p(N), T (N)) + ν), which can be simplified

to get the first inequality, since ν ≥ 0.
The second inequality follows from the fact that the proposal is not accepted

when all of the informers receive a low signal. But in the proof of Proposition 9,
we show that πEN (p(N),T (N))

N goes to 1
2 (1 − ν) in this sequence of numbers, which

is a contradiction.
With this, there exists infinitely many informers almost surely. All results

can be then shown similarly as in the proof of Proposition 5. �
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